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Multiple Peaks of the Velocity Field as the Linear 
Perturbations on the Non-Eulerian Inviscid Vortex

TAKAHASHI Koichi

Abstract : Stability of the two-dimensional axisymmetric solution for the non-Eulerian inviscid 
flow governed by the Navier-Stokes equation is analyzed by the linear perturbation method.   
Two kinds of perturbations are studied.  The first one propagates only azimuthally with a con-
stant angular velocity.  In the second one, the angular velocity is dependent of radial coordi-
nate.  The feature of the latter kind is prominently manifested as the propagation of the turbu-
lence not only to the azimuthal direction but also to the radial direction.  In such a mode, the 
motion of turbulence can take various patterns between two extrema.  In one pattern, turbulence 
propagates inward, disappear, then appear again and propagate outward.  In the other one, tur-
bulence propagates inward and completely disappears.  Compressibility is the necessary condi-
tion for the propagation of turbulences.  The result of the present analysis provides a model for 
understanding the generation and propagation of the second peak of the wind frequently observed 
in large typhoons.  
Key words : Navier-Stokes equation ; Euler equation ; inviscid flow ; perturbation ; typhoon

1.  Introduction

A new solution to the Navier-Stokes equation was recently found by Takahashi (2013).  It 

describes a two-dimensional concentric flow around an axis in inviscid limit.  Since it is not derived 

from the Euler equation, we shall call such a flow non-Eulerian inviscid vortex (NEIV).  This flow is 

maintained through a balance of the centrifugal force and the pressure gradient.  The qualitative con-

sistency of its flow profile and the phenomenology of typhoon has also been observed.

In the previous work, it was explored what kinds of perturbations are allowed to the solution.  The 

analysis was done by ignoring the effect of density and pressure perturbations with a result that a 

prominent peak appears in the azimuthal flow profile and propagated along radial direction.  The pur-

pose of the present paper is to take account of the pressure gradient term to evaluate the temporal pro-

file of the full perturbation that includes the contributions from density and pressure. 

In some cases, the stability of solution of differential equations is explored by restricting the per-



東北学院大学教養学部論集　第 166号

2

turbed solution to lay on the surfaces determined by constants of motion.  This is particularly effec-

tive to investigate the sensitivity of isolated system to the initial conditions (Arnol’d 1965a, b).  That 

is, if the initial state is at the minimum (or, extremum) point of energy on a surface of other constants 

of motion, the perturbation cannot grow by itself and the state is expected to be stable.  Possibility of 

such stable flows in two-dimension was argued by Vallis et al. (1989).  On the contrary, in this paper, 

our NEIV is assumed to model a large scale motion of atmosphere that always interacts with its envi-

ronments and thus no constraints other than the equation of motion and the continuity equation are 

imposed on the perturbation.  In particular, energy and enstrophy will not be conserved because they 

are quadratic in the velocity field.  On the other hand, the periodic boundary condition around the 

symmetry axis will ensure the conservation of circulation that is linear in velocity field. 

As the flow is inviscid, the perturbation is governed by the Euler equation, which, together with the 

continuity equation, is a first order differential equation.  This situation will bring about a great sim-

plicity in our investigation.  The method is applicable to any 2D concentric flovos.

In the next section, the perturbation on the Navier-Stokes equation with a constant angular velocity 

is studied.  In sec.3, the continuity equation and the equation of state are taken into consider-

ation.  In sec.4, a case is studied in which the angular velocity of perturbation is coordinate-depen-

dent.  A summary is given in sec.5.

2.  Pressure gradient and perturbation for the flow with a constant angular velocity

2.1  Non-Eulerian Inviscid Vortex

The Navier-Stokes equation in cylindrical coordinate is, with obvious notations, the following set 

of equations :

�        (2.1a)
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The dot denotes partial differentiation in time.  The static NEIV solution is obtained for the diver-

gence free field by setting v v/ , /lnh r r r drr r h rr 1
1

1= = g i-i
- ^ h#  ( g is the z-component of the vor-

ticity),  0vz=  and by taking the limit o→0 and h1→0 with c≡－o/h1 being fixed (Takahashi 

2013).  In this limit, vi is dependent on r only.

For rvî h, we shall adopt the solution for an incompressible flow that obeys the equation (Takahashi 
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2013)

                    (2.2a)

The prime stands for a differentiation with respect to r.  c and c1 are constant.  c is the ratio of o 

to the characteristic radial velocity in the course of taking the limit o→0. 

(2.2a) can be readily extended to the case in which v is divergence-free and z-dependent by pre-

serving the z-derivative term :

            (2.2b)

However, in this paper, we restrict our considerations to the z-independent case.  In Fig. 1, an 

example of v rî h as a solution of (2.2a) and its derivative is shown. 

v 0=i  at the center, and stays small around a narrow region around the center.  vi rapidly increases 

with r until it reaches a maximum.  Then vi gradually decreases as lnr/r at long distances.  The 

width of the peak increases with c.  The behaviour of v /d dri  near r = 0 clearly shows the existence of 

an ‘eye’ that resembles that of typhoon.  We shall call the maximum in vi the primary peak.

The well-known Burgers vortex (Burgers 1948) also has the vi-component only in inviscid 

limit.  The solution presented above differs from the Burgers vortex in that (i) the former has a very 

small (smaller than any power of r) tangential velocity near the symmetry axis while v r\i  in the lat-

ter and (ii) the circulation at infinity diverges like lnr in the former while it is finite in the latter.

The appearance of lnr/r term in vi occurs also in other flows with a special value of the Reynolds 

number Re, e.g., a flow of Re=－2 between two rotating cylinders (Hocking 1963) or a flow of Re=2 
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Fig. 1　‌�An example of rvî h and i rvl^ h for c = 0.1 and c1 = 1.  The density t is constant.  For the meaning of 
the parameter c, see Takahashi (2013).
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with a suction outside a rotating cylinder (Preston 1950).

The NEIV can be regarded as an example of more general non-Eulerian inviscid flow (NEIF).  We 

here give the general definition of the equation that is obeyed by the incompressible NEIF.  It reads

where only terms leading in o are retained for each component of v.  For at least one component, the 

r.h.s. is required to give non-vanishing contribution.  The solution adopted below as the background 

flow is of a static vortex configuration.

2.2　Perturbations

Let us allow small variations of the velocity components as v vr rv " +di i i^ ^h h , v v0r r"= d , 

v v0z z"= d  .  At the same time, the pressure and the density are varied as P P P" d+  and 

"t t dt+ , where t is the unperturbed constant density.  By substituting these to the original 

Navier-Stokes equation, we obtain

                   (2.3a)

                   (2.3b)

                        (2.3c)

where the r.h.s.’s of the above equations are, from (2.3a) to (2.3c), the variations of the pressure gradi-

ent terms, i.e., / , / /P P rr2 2d t d t- - i^ ^h h   and /Pz2d t- ^ h, respectively.  The identities P P0 z2 2= =i  

and v/ /P rr
2=2 t i , which hold for the unperturbed flow with vr=vz=0, have also been used.  (2.3a～c) 

are nothing but the perturbed Euler equation since the viscosity term has been dropped.  The pertur-

bation on the external body force has also been assumed to vanish.

The equations are linear in perturbations.  Therefore, in the Fourier expansion of physical quanti-

ties in the azimuthal angle i, only coupling among the coefficients of a common single mode will take 

place.  Assuming for simplicity that vzd  vanishes and that z-dependences of physical quantities are 

absent, we write

                         (2.4a)

                        (2.4b)

                      (2.4c)

                        (2.4d)
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r.  The turbulence described by (2.4) propagates azimuthally but not radially because the phase fac-

tors are r-independent.

Substituting (2.4a～d) to (2.3), we have

                    (2.5a)

                    (2.5b)

where the prime denotes differentiation with respect to r.  Let us choose A to be real.  Then, from 

(2.5), non-trivial solutions will exist when B and C are real. 

We here have two equations for four unknown functions.  Other equations to be taken into account 

to determine them may be the continuity equation and the equation of state, about which we are going 

to discuss in the next section.

3.  Continuity equation and equation of state

The continuity equation in the first order of perturbation reads

                (3.1)

Using the expressions (2.4a), (2.4b) and (2.4d) for v v,rd d i and dt, we have

                    (3.2)

The equation of state reflects the thermodynamical property of the system.  For example, for an 

adiabatic change, P P/1 1\dt dc- +  will hold within linear perturbation.  If P is slowly varying as 

compared to the perturbations, the proportionality of dt and Pd  may be a good approximation.  Thus, 

it is suggested that 

                               (3.3)

with a constant a.  0a=  implies incompressible fluid (2.5a), (2.5b) and (3.2) under the condition 

(3.3) are the set of equations to be solved.  Eliminating B by using (3.2), the equations (2.5a) and 

(2.5b) are rewritten for a vector VT≡(A, C) as :

                               (3.4)
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                      (3.5)
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where v /n r/~ ~- iu .  The point (A, C)=(0, 0) in the A-C plane is the fixed point of (3.4).  From 

Fig. 1 we see that, for r～0 or r→∞, the terms in (3.5) involving vi are very small as compared to 

remaining terms and can be neglected.  In those regions, M can be approximately written as 

                            (3.6)

C then approximately obeys the equation 

                          (3.7)

The regular solution that does not diverge at r=0 and 3 exists for 02a  and, apart from normaliza-

tion, is given by

                             (3.8)

where Jn is the Bessel function.  It should be noted that the perturbation exists in case 0!a , i.e., the 

fluid is compressible.

Near r=0, C behaves as rn.  Correspondingly, A and B behave as rn－1.  In order for M given by (3.5) 

to be non-singular to yield regular solutions, ~ must be either positive and sufficiently large or nega-

tive.  Examples of the solution to (3.4) for C and A are shown in Fig. 2.  The amplitudes with n 1$  

generally have a maximum at a finite radius.

4.　Differential rotation

In the previous paper (Takahashi 2013), by neglecting the pressure gradient, i.e., r.h.s. of (2.3a) and 
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Fig. 2　‌�Examples of the solution for A and C with arbitrary unit.  Figure on each curve is the value of a.   
Parameters are chosen as n = 1, ~ =－2.
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(2.3b), the existence of perturbation with non-rigid phase rotation was suggested.  In this section, we 

shall take those pressure gradient terms into consideration to make the previous analysis more accu-

rate.

The perturbations obey the equations (2.3a～c) together with the continuity equation (3.1).  Now, 

we assume that the angular velocity ~ in (2.4a～d) is r-dependent, thereby yielding a differential rota-

tion.  This assumption emerges from the fact that the time differentiation is always accompanied with 

the r-dependent angle-differentiation term.  The amplitudes may also be assumed to be r-dependent 

and have a common factor eikz as e.g. Aevr i n r t ikz=d +i ~- ^^ h h , iBev i n r t ikz=d +
i

i ~- ^^ h h , iZevz i n r t ikz=d +i ~- ^^ h h  

etc.  Substituting these to (2.3a～c) and (3.1), we have 

                  (4.1a)

                   (4.1b)

                        (4.1c)

              (4.1d)

Owing to the appearance of the terms linear in t in (4.1a) and (4.1d), the density amplitude D will 

have a linear-dependence on t like 

　　　　　　　　　　　　　　　　　　D=D0+iD1t.�                              (4.2)

Of course, the phase of D1 must be chosen so as to keep the sign of the density positive.  (4.1b～d) 

show that, when A, B, C and Z are time-independent, D1 is non-zero only when A is non-

zero.  Namely, the radial component of the velocity brings about in- or out-flow of matter and causes 

the change in density for 2-dimensional flow.

B, C and Z are eliminated to get an equation involving A, D0, D1 and ~.  Derivation of this equa-

tion is given in Appendix.  Interestingly, this equation involves only A and ~ and expresses that the 

product of A with a polynomial of ~ is zero.  When A is non-zero, this equation leads to an ‘eigen-

value’ equation for ~ :

                  (4.3)

where ~u has been defined below Eq.(3.5).  See Appendix for the derivation of (4.3).  When k2 is 

real and ~ is a solution of (4.3), its complex conjugate ~* is also a solution.  In addition, (4.3) is 

invariant under n→－n, ~ →－~.  This means that, if ~ is a solution for an n then －~ is a solution 

for －n.

Solutions for special values of n and k are given below.
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i)　n=0 (unstable for k≠0)

                          (4.4)

ii)　 n "3; ;  (unstable)

                              (4.5)

iii)　k=0 (unstable for n 2; ;$  )

                    (4.6)

Here, a mode of a complex ~ is called unstable.  As is suggested by these extreme cases, the eigen-

value equation (4.3) has both real and complex solutions for almost all regions of parameters.  Two 

complex solutions are mutually complex conjugate.  Therefore the perturbation blows up in course 

of time for one complex solution and decays for the other.  The numerical solutions of (4.3) are 

v .k r r2 4 2 2! != +~
iu

v .n r"! !~
iu

v vor .n r n r1 1 1 1! != +~ - -i iu ^ ^h h

Fig. 3　‌�Real (left) and imaginary (right) parts of four ~ as functions of r for n=1(upper panels) and 2 (lower 
panels), c=0.1, k=0.1.  Two of the ~’s are real and the others are complex above the bifurcation 
point.  The bifurcation point is inversely proportional to k.  For n=2, ~’s with the smallest real part 
have an imaginary part.
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shown in Fig. 3 for kz=0.1 and n=1 or 2.  Errors of a few percent may exist when two branches are 

contiguous. 

Generally, there exist four distinct solutions.  The sign of nRe(~) is positive or negative, corre-

sponding to the mode that propagates positive or negative θ-direction, respectively.  ~ with positive 

imaginary part causes a temporal blow up of the oscillations in velocity field and other physical quan-

tities.  The mode with real ~ is of neutral stability.  ~ with negative imaginary part corresponds to a 

decaying turbulence.  We may call these three modes as growth, stationary and contraction mode, 

respectively.  There exist regions of r where all frequencies are real.  In these regions, four modes 

can coexist for a long term.  It is also noted that the profile of Re~ is similar to that of vi.

We have seen that the complex ~’s are allowed for inviscid flow within linear perturbation where 

no constraint other than the equations of motion has been imposed on the perturbation.  Nevertheless, 

the concept of NEIV will be a good approximation for real flows of a very large scale like 

typhoons.  Let us assume that, for such flows, the space-dependent complex eigenvalues found above 

are good approximation for temporal behaviours of perturbations.  Now, the system’s energy can 

generally change in accordance with the variations of the velocities, pressure and density.  Grow of 

amplitudes in viscous fluid will require addition of energy.  Then, we may expect for viscous flows, 

when energy is added to the system in any form, the growth modes with Im ~>0 can be excited and 

the perturbations will grow.  When there is no energy supply, the perturbation will decay.  In this 

case the contraction modes with Im 0#~  will be of physical ones. 

When k is real, the frequency generally acquires a nonzero imaginary part beyond a certain dis-

tance.  For surviving decay modes, it is rc=0 (n = 0) and rc=3 (n=1) in the above choice of parame-

ters.  rc decreases as k increases.  When k is complex, Im(~)!0 in the whole region of r.  We will 

consider the case of real k in the followings.   

(4.1a～d) and (4.2) are not sufficient to determine the functional form of amplitudes.  Instead, the 

ratios of amplitudes are given by the following relations (See Appendix for derivation) :

                       (4.7)

                               (4.8)

                             (4.9)

From equations (4.7)～(4.9), together with the equation (A14) for A, the r-dependences of the 

amplitudes are determined.  The case for n=0 is shown in Fig. 4.  All of the amplitudes shown here 

are real and have a peak near r=2.  All of the perturbations are maximized inside the primary peak of 
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vi shown in Fig. 1.

Since vr and vz are zero for the unperturbed flow, the amplitudes A and Z are the direct measures of 

the corresponding total (i.e., perturbed) velocity components.  The r-dependences of vrd  and vzd  

determined by the amplitudes shown in Fig. 5 are shown in Fig. 6.  The result for kz=1 are also 

shown in the same figure.  The direction of the flow changes drastically in the course of 

time.  Simultaneous existence of vrd  and vzd  is a consequence of mass conservation in case no singu-

larity is present (Deppermen 1947). 

In order to see the full profile of turbulences, we need to know the r-dependences of the amplitudes 

Fig. 4　‌�Perturbation amplitudes A, B, C and Z for real ~, n=0, kz=0.1 (left panel) and 1 (right panel).  For 
k=0.1, C and Z are magnified by ten-times.  The sign of A is arbitrarily chosen.

Fig. 5　‌�Perturbed vrd  (upper left) and vzd  (upper right) derived from the amplitudes shown in Fig. 5.  Three 
curves are the velocity profiles at t = －20 (thin solid curve), －10 (dotted curve) and 0 (thick solid 
curve).  The lower left and lower right panels are velocity components for kz=1.
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A, B etc.  This will be achieved by exploiting, e.g., the equation of state that relates D0 in (4.2) to C 

and solving the equations (4.1).  Then, e.g. for vi, the following single-mode perturbation is utilized 

to observe the total circular flow profile :

                        (4.10)

Other components are expressed in a similar way. 

The immediate conclusion derived from (4.10) is that the turbulences propagate with the phase 

velocity given by

                      (4.11)

The radial phase velocity does not have a unique definition.  Here in (4.11), the radial component 

has been defined by a condition Re(~)t be temporary constant.  The n = 0 mode does not propagate 

in azimuthal direction.  The above result implies that the turbulences can in principle propagate to 

any directions, depending on the signs of Re(~), n and Re(k).  In particular, the radial component is 

negative for t < 0 and positive for t > 0.  Since the profile of Re(~) is similar to that of the azimuthal 
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Fig. 6　‌�Upper two rows :  An example of the temporal variation of v ,toti  given by (4.9) from t = －60 to 0 (from 
top left to bottom right; from left to right) for n = 0, k = 0.1, c = 0.1, i = 0, z = 0.  Amplitude was cho-
sen arbitrarily.  Lower two rows : k = 1 ; from t = －40 to 0.  Other parameters are same as the upper 
two rows.
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component, this means that the secondary peak moves first inward and later outward in the outer 

region.  In the core, the motion is opposite.  In contrast to the Rossby wave, the direction of the 

phase velocity is not affected by the Coriolis force.

In the calculations below, the amplitude A is chosen as a solution of (A14) with D0=0 for conve-

nience.  An example of the temporal behaviour of v ,toti  at i = 0 is shown in Fig. 6 for n=0, 

k = 0.1.  Here a real ~ has been chosen.  At fixed time, several peaks appear due to the factor e l r t~- ^ h .  

The number of peaks is greater for larger maximum of ~(r).  As was expected, the peaks in the 

region ~l<0 move inward when t < 0.  Oppositely those in the region ~l < 0 move outward.  In 

other words, the perturbation climbs up the slope of vi.  The perturbation climbs down the slope of 

vi when t > 0.  The case of k = 1 is also shown in Fig. 6.

In Fig. 6, more than one peak existed initially.  For smaller k, the profile of peaks of vi is finer.　

The outer peaks moves inward in course of time and disappear at t = 0.　Since n = 0, the modulation 

at i = r from the unperturbed vi is in-phase with that of i = 0.　In the case of k = 0.1, a fine structure  

is observed as compared with the case of k = 1.　Weakening and intensifying are taking place alter-

nately at a fixed point.

An example of n = 1 and 0Im #~  is shown in Fig. 7.　Im~ is nonzero for r > 3 (see Fig. 3).　It 

is observed that initially one prominent secondary peak is present at around r = 7 and moves inward 

until it merges with the primary peak.  During this change, the heights of the peaks get lower.

The difference between the two cases shown respectively in Fig. 6 and Fig. 7 is that, for n = 0, ~ is 

real and the motion at fixed r is periodic in time thereby yielding the same profiles repeatedly, while, 

for n = 1 (rc = 3), Im~ is negative in the region r > rc and the initial turbulences located beyond rc 

decay exponentially.　Although not shown here, after t = 0, the turbulences substantially disappear 

beyond the primary peak of vi.　Even in this case, small turbulences generally remain and periodi-

cally repeat the appearance and disappearance in the region where Im(ω) is zero.  The region where 

the turbulence is observed for a long time span diminishes as k gets larger.  The long-time turbulence 

is further suppressed for complex k.

As was mentioned before, the turbulence around the NEIV does not conserve but increases the 

energy.　Thus an input of energy is a requisite for the excitation of the growth mode, which should be 

followed by the stationary and contraction modes after cutting off the supply of energy.

Two three-dimensional flow profiles are shown in Fig. 8.　A concentric structure and a spiral struc-

ture of the eye wall are clearly observed in the mode n = 0 and 1, respectively.　Also in the latter 

case, the double wall is observed in almost all radial directions.
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Fig. 7　‌�An example of the temporal variation of v ,toti  given by (4.9) from t = －60 to 0 with equal time inter-
vals (from top left to bottom right ;  from left to right) for n = 1, k = 0.1, c = 0.1 , i = 0, z = 0 and for a 
certain choice of amplitude.

Fig. 8　‌�Three-dimensional flow profiles v ,toti  for r < 9 at t = －50.　Left :  bird’s eye view, Right :  view from 
a point on the polar axis.　Model parameters for upper panels :  n=0, k=0.1 and for lower panels :  n=1, 
k=0.1.　Unit for the vertical axis is arbitrary. 



東北学院大学教養学部論集　第 166号

14

5.　Summary and remarks

In this paper, two kinds of perturbations around the axisymmetric NEIV are considered. In the per-

turbation of the first kind, turbulences of the flow velocity, the pressure and the density are periodic in 

i and t.　They propagate azimuthally but not radially.　The angular velocity of the azimuthal propa-

gation is real and constant.　Turbulence rotates as if it were a rigid body.　Obviously, this kind of 

perturbations must be of a small spatial scale.

In the perturbation of the second kind, the angular velocity is generally complex and is a function of 

the radial coordinate, thereby rendering the temporal behaviour aperiodic.　The gross r-dependence 

of the angular momentum is similar to that of rvî h.　Thus, this kind of perturbations can be of a 

large scale.  Together with relatively high oscillations in radial direction, there can appear a promi-

nent peak of turbulence beyond the primary maximum of vi.  With the lapse of time, it moves inward 

and disappears if the imaginary part of the angular momentum is negative.　On account of the requi-

site compressibility, both kinds of perturbation are of the density waves.

These results based on (3.4) and (4.3) do not depend on the functional form of the concentric flow, 

rvî h.

It seems worthwhile to notice a striking similarity of the starting flow solution to the typhoon mod-

els.  Our analysis is based on the NEIV generated by barotropic balance.  There rvî h is very small 

near the symmetry axis, rapidly increases with r, takes a maximum at a certain radius and then mono-

tonically decreases to zero as lnr/r.  This behaviour of the azimuthal velocity is similar to the hori-

zontal wind profiles of the typhoon models (Fujita 1952, Holland 1980, Merrill 1984, DeMaria 1987, 

Emanuel 2004, Holland et al. 2010) developed from the modified Rankine vortex model (Hughes 

1952).  The distinctive features of our rvî h is that it has an ‘eye’ at the center and exhibits non-

power decay at long distances, which is also in agreement with the observations.  This indicates that 

the thermally averaged intermediate level profile of typhoon can be understood in terms of the Newto-

nian mechanics. It is known that the track of typhoon predicted by a model calculation is sensitive to 

the form of rvî h (Holland and Leslie 1995).  Utilizing the flow profile given by vi in the calculation 

of typhoon track will be intriguing.

Unfortunately, the perturbations vrd  and vzd  obtained in the previous sections are strongly oscillat-

ing in time and do not reproduce observations on real typhoon.  In reality, vrd  is negative and vr; ;d  

is an increasing function of r outside the primary peak of vi where a convection ring exists (Depperman 

1947).  At the convection ring, steady updraft has been observed at intermediate levels in the typhoon 
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wind, which is of course constrained of having zero upward velocity at the sea surface.  Thus it will 

be worthwhile to explore what occurs to vrd  and vzd  if physically meaningful boundary conditions are 

taken into account, which is an entirely non-trivial problem because ~ is complex, albeit non-vanish-

ing vrd  and vzd  are also a consequence of temperature difference between the core and environments 

in real typhoon (Depperman 1947).  Namely, in our scheme of purely Newtonian dynamics (i.e., no 

thermodynamical effects being taken into account), one may envisage the system to be closed down-

ward and be open upward.  Then, the existences of flow in inward radial direction and the peak in vi 

at some radius, together with the continuity, will solely imply an emergence of a convective ring. 

It is also notable that real typhoons sometimes exhibit the second peak (and in some cases, the third 

peak, too) of rvî h.  There are many hypotheses proposed so far to explain the formation of the sec-

ondary eyewall (See e.g., Terwey and Montgomery 2008).  One of the characteristic of the secondary 

eyewall is its inward movement (see e.g., Willoughby et al. 1989).  Such a behaviour of turbulence 

might be interpreted as the perturbation of the second kind discussed in this paper, provided that the 

secondary peak is associated with a strong upflow under realistic boundary conditions.  Willoughby 

et al. (1989) reported that the region of turbulence formed a circle or semicircle.  In our terminology, 

this phenomenon is interpreted that the mode of n = 0 or 1 dominated.  Higher modes will possibly 

be excited, too. 

It should be kept in mind that, in reality, the formation and movement of the second peak in azi-

muthal velocity occur through the life cycle of typhoon.  In particular, the merge of two peaks seems 

to mark the period of transition from typhoon to tropical cyclone.  In our view, this process will cor-

respond to the complex ~ with a negative imaginary part.  Confirming further the applicability of our 

model to the real typhoon will require analyses that take account of the variations of such model 

parameters as c and c1 as well as the superposition of modes that fulfill given boundary conditions.  

The perturbation associated with a vortex of a planetary scale has been known as the Rossby wave. 

The essential point of the emergence of this wave is the interaction of the vorticity with the rotation of 

the earth.  The phase velocity of the Rossby wave is determined through the relation of the back-

ground flow with the Coriolis force.   In contrast, the perturbations we explored in the present paper 

do not depend on the Coriolis force and propagate to any directions with the space-time dependent 

velocity determined by the background velocity field together with the mode.  Future advance in 

observation will enable to judge the existence of the wave of this kind in typhoons or hurricanes.
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Appendix :  Eigenfrequency equation

In this Appendix, starting from (4.1) and (4.2) in the main text, the equation is derived that deter-

mines the r-dependence of the frequency ~.  Note that explicitly t-dependent terms exist in (4.1a) 

and (4.1d).  These terms must be cancelled by similar t-dependent terms involved in D.  Then this 

kind of cancellations take place when

                            (A1)

                             (A2)

where /n rv/~ ~- iu .  By comparing t0 terms in (4.1a～d), we obtain

                        (A3)

                       (A4)

                            (A5)

                  (A6)

Eliminating D1 from (A1) and (A2), we have

                           (A7)

(A6), (A3) and (A1) form the set of differential equations

                   (A8)

                      (A9)

                        (A10)

where (A5) has been used to eliminate Z.  Remaining equations (A4) and (A7) are the constraints 

that are used to express B and C in terms of A :   

                     (A11)

                            (A12)

Dividing both sides of these equations by A, together with (A.5), we have (4.6), (4.7) and (4.8) in 

the main text. 

Differentiating both sides of (A12) with respect to r leads to 
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(A2), (A11) and (A12) can be used to express Al in (A8) and Cl in (A9) in terms of A and D0 as

             (A14)

                (A15)

On the other hand, by using (A14), we eliminate Al in (A13) to obtain

    (A16)

Equating (A16) to (A15), D0 disappears and only A remains.  Then, assuming that A is nonzero, we 

have the equation (4.3) in the main text.
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