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【Article】

Non-Eulerian Inviscid Vortices

TAKAHASHI Koichi

Abstract : It is shown that taking the limit of vanishing viscosity in the Navier-Stokes equations 
is compatible with keeping the contribution from the shear stress term finite.  All types of such 
non-Eulerian inviscid flow are found for the two-dimensional steady axisymmetric vortex. 
Keywords : Navier-Stokes equations, non-Eulerian inviscid vortex

1.  Introduction

The NS equations for incompressible flow are expressed as

(1.1)

with the obvious notations.  The first term on the r.h.s.  expresses the shear stress due to viscosity.  

The inviscid fluid is customarily supposed to be described by dropping this Laplacian term.  The 

resultant first order differential equation is called the Euler equation and has been used to understand 

large scale meteorological phenomena in which the shear stress is negligible as compared to remain-

ing terms in (1.1).

Another way to take the zero viscosity limit is to divide the both sides of (1.1) by o and then let o 

approach zero

                   (1.2)

Here each component of the velocity field is assumed to be a function of o.  If (1.2) leads to equa-

tions with non-trivial solutions, they will describe the inviscid flow that is controlled by the Laplacian 

term.  We shall call such flows as the non-Eulerian inviscid flows (NEIFs). 

(1.2) is the second order differential equation and is expected to lead to a new class of inviscid flow 

that the Euler equation does not cover.  In this paper, one example of the NEIF is presented for a vor-

tex motion of the incompressible fluid, which may be called non-Eulerian inviscid vortex (NEIV).
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2.  NS equations in cylindrical coordinate

For the later convenience, we here write down the NS equations in the cylindrical coordinate on the 

slowly rotating frame (rotation of the frame is not essential for our arguments) as 

     (2.1a)

     (2.1b)

                        (2.1c)

                              (2.1d)

, ,0 0 zX X=^ h is the angular frequency vector of the reference frame.  ft with f 0=it  is the external 

force other than the Coriolis force.  The mass conservation is the another condition to be taken into 

account,

  (2.2)

The system is in the Euclidian space with no boundary.

3.  o-expansion and zero viscosity limit in three dimension

Assume that the velocity field and the pressure are functions of o and are asymptotically expand-

able as series of o in the whole Euclidean space with no boundary :        

                       (3.1)

(If we consider the time-dependent flow and the regime where the acceleration valances the viscous 

force, the expansion in o1/2 will be more pertinent.)  Note that, when the system is steady and has no 

i-dependence, the equations (2.1) and (2.2) remain invariant under the transformation "o o- , 

v v v v, , , .v v p pr r z z" " " "- -i i   In this case, therefore, vr and vz have odd powers of o in (3.1), 

while vi and p have even powers.

Physically, it may be more appropriate to adopt, instead of o, such a dimensionless quantity as the 

inverse of the Reynolds number for the expansion.  For the present purposes, the expression (3.1) 

suffices.  We here do not ask an important mathematical question whether the expansion (3.1) always 

converges everywhere.

Inserting (3.1) to (2.1) and comparing the terms in both sides, we have equations for ,r tvn̂ h.  We 
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here give the equations derived from o0, o1 and o2 terms.

(i).  O(o0) equations

These give nothing but the Euler equation :  

(3.2a)

                                   (3.2b)

We are interested in a field configuration for an incompressible and inviscid fluid that is static and 

rotationally invariant about the z-axis for all of vn.  This means that the derivative terms with respect 

to t and θ are dropped.  Furthermore, the velocity field is supposed to have the θ component only in 

the inviscid limit, i.e., 0, , 0v v0 0= i^ h where v 0i  is a function of r only.  In this case, we have noted 

that vrn and vzn are nonzero for odd n, and v ni  are nonzero for even n.  These conditions reduce (3.2a) 

to

                        (3.2c)

                                       (3.2d)

The mass conservation (3.2b) yields a trivial equation 0 = 0.  O(o1) and O(o2) equations are similarly 

derived.

(ii)　O(o1) equations 

                         (3.3a)

                                 (3.3b)

(iii)　O(o2) equations 

               (3.4a)

                            (3.4b)

There are six equations for unknown six functions.  The dynamics implied by (1.2) requires that v0 

and v1 should make a balance.  (3.4a) is used to determine v 2i  from v 0i , vr1, vz1 and p2.  Therefore, 

the equations relevant for forming NEIF are (3.2c), (3.2d), (3.3a), (3.3b) and (3.4b).

Let us seek solutions in which vrn and v ni  do not depend on z.  Then, from (3.4a), p2 must be a sum 

of a function of r and a function of z.  On the other hand, (3.4b) implies that the z-dependent part of 

p2, if any, is also a function of r.  The simplest way to reconcile these situations will be to assume 

that pz 22  is a constant multiplied by a z-dependent factor common to the remaining terms in (3.4b), 
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                            (3.5)

where h(z) is a function of z to be determined later.  In the inviscid limit, vr1 and vz1 become irrele-

vant and the flow is described only by v 0i . 

4.  Vortex solution

Now, the equations (3.2c), (3.2d), (3.3a), (3.3b) and (3.4b) are viewed to form themselves in three 

groups.  (3.2c) and (3.2d) are used to determine the r and z dependences of p, respectively, when v 0i  

is known.  (3.3a) is utilized to solve for v 0i  when vr1 and vz1 are known.  (3.3b) and (3.4b) can be 

used to determine vr1 and vz1. 

Consider first (3.3a), which is rewritten as 

                   (4.1)

The prime denotes the derivative with respect to r.  It is notable that, even in the absence of bound-

ary, the inviscid flow v 0i  is affected from the viscous component vr1.  The two independent solutions 

for the homogeneous equation for v 0i  are 1/r and r drrer dr r1
0

vra
r

1- l l^ h# # .  The particular solution is rzX-  

that expresses the inertial ‘motion’ of the fluid at rest relative to the rotating frame.  The general reg-

ular solution is given by                           

                         (4.2)

In order for v 0i  given by (4.2) to be finite at infinity, vr13^ h must be negative.  The second term on 

the r.h.s. of (4.2) is not essential for our arguments and is disregarded hereafter.

Next consider (3.3b) and (3.4b).  Since v 0i  is assumed to be a function of r only, vr1 and vz z12  are 

functions of r only.  The flow is necessarily of the three dimensions.  The continuity (3.3b) suggests 

that 

                               (4.3)

Thus, h(z) in (3.5) is proportional to z, i.e., h(z)=c2z.  Substituting (4.3) into (3.4b), together with (3.5), 

yields

    (4.4)

Near r～0, the solutions of (4.4) for c 02!  behave as v rr1\ .  Thus far two solutions are known 
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                                         (4.5a)

                        (4.5b)

The former and the latter are the Burgers vortex (Burgers 1948) and the Sullivan vortex (Sullivan 

1984), respectively.

An insight into the possible global behaviours of the solution of (4.4) is gained by rewriting it in 

terms of a new variable x such that

                           (4.6a)

or

                             (4.6b)

as

                          (4.7)

If we reinterpret r as the ‘time’ variable and x as the ‘coordinate’ of a point particle, then this equation 

expresses the classical one-dimensional motion of the particle with a unit mass in the potential U(x) = 

x3/3−c2x under the effect of some non-conservative force given by the last term on the r.h.s.  of 

(4.7).  An example of the form of the potential U is depicted in Fig. 1 for c2=1.

Multiply the both sides of (4.7) by xl and rewrite the resultant equation to obtain

                      (4.8)

This equation means that the temporal variation rate of the particle’s ‘total energy’ is governed by the 

non-conservative force involved on l.h.s.  If the l.h.s. of (4.6) is zero, then the energy is conserved.  

This is achieved by resting the particle at the one of the extrema of the potential.  Discarding the pos-

itive value by the reason already mentioned, the acceptable solution is 

                             (4.9)

This is shown as the point A in Fig. 1, which is nothing but the Burgers vortex solution with k=1/2 

with the ‘energy’ equal to 2/3.  We require any physical solution to asymptotically approach the point 

A.

The particle at rest generally begins to roll down the potential slope.  The behaviour of x(r) and the 

corresponding increase of the speed of the real flow near r = 0 will be written as

                            (4.10a)

,krv 1,r B=-

/ / .expkr kr r6 1 2v 1,r
2

S=- + - -^^ hh

,x z r
rv vz r1 1

=- =
l^ h

r xrdr1vr
r

1 0
= #

.x x c r x1vr2
2 1=- + + -m lb l

.dr
d x U x r x2

1 1vr2
1

2+ = -l l^b bhl l

1 .x r
2vor r1=- =-

,x r x a r0 2
2. +^ ^h h



東北学院大学教養学部論集　第 167号

48

                        (4.10b)

where x(0) and a2 are given by the initial conditions.  The particle loses the initial energy due to the 

dissipative term /x r2- l .  Even in the case vr1 temporarily acquires positive values, on approaching 

the point A, the functional form of vr1 should approach −r/2, thereby the non-conservative force even-

tually turns totally dissipative.  By appropriately choosing the initial position, the particle will 

approach A at r 3= .  One of such motions corresponds to the Sullivan’s vortex, for which xSullivan(0) 

= 2 and a2 = −3/2, and is designated by D in Fig. 1.  Its initial energy is 2/3, being equal to the final 

state’s energy.

When the particle’s initial position is B in Fig. 1, then it can climb up the slope if the acceleration 

x 0m^ h has a positive sign at B.  By appropriately choosing the acceleration at B, the particle can be in 

the stationary state A at r 3= .  The similar thing holds for C, E and F : if the particle has an appro-

priate negative acceleration at these points, then it can climb up the slope and get stationary at A. 

  Interestingly, the particle at the initial point C or F can have a positive initial acceleration, i.e., 

x 0 02m^ h , to reach the point A.  It moves down and then up the slope beyond the minimum, stops at 

a certain point, turns the direction of motion and climbs down and then up toward the point A. 

  These peculiar characteristics of the points C and F are due to the existence of vr1 in the non-con-

servative force of our fictitious classical dynamics. 

vr1 is easily determined by directly solving (4.4).  r = 0 is a singularity of (4.4), so that the numeri-

cal integrations were started from r0 near r = 0.  We set r0 = 0.02.  The results are shown in Fig. 2 

for the six types of initial conditions mentioned above.  Since c2 in (4.4) is fixed to unity, all solutions 

asymptotically approach ～r/2.  The profiles labeled A, B and C are almost indistinguishable each 

,r
x

r a r2
0

4vr1 2 3. +^
^

h
h

Fig. 1　 Potential /U x c x33 2= -  with c2=1.  The maximum and minimum points are x=−1 and 1, respec-
tively.  This graph shows why c2 > 0 is necessary for physical solutions to exist.  For alphabetical let-
ters and arrows, see the text.
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other in large scales and exhibit inward flows in all space.  Those labeled D, E and F exhibit the so 

called two-cell structure : the direction of the flow is outward near the symmetry axis and inward in 

outer region. 

vz1 is determined from (4.3).  The six profiles corresponding to those in Fig. 2 are shown in 

Fig. 3.  For all of the flows, 1vz13 =^ h .  This figure shows that the flows A, B and C are 

upward.  In the Burgers vortex A, 0vr z12 / .  On the other hand, on approaching the symmetry axis, 

vz1 looks to increase (decrease) for the flow B (C).  vz1 changes the sign at some radius for the flows 

D, E and F, so that their two-cell structures are obvious.

v 0i  determined by (4.2) with 0zX =  are shown in Fig. 4 for the flows A, C, D, E and F.  Far away 

from the maximum point, v 0i  decreases as 1/r.  Near the symmetry axis, v 0i  is proportional to r for 

Fig. 2　 Six types of the r-dependence of vr1.  The characters A~F correspond to those in Fig. 1.  The initial 
conditions are A (thick solid curve) : x(r0)=−1, x r 00 =l^ h ; B (long-dashed curve) : x(r0)=−2, x r0 =l^ h

14.339 ; C (dash-dotted curve) : x(r0)=−0.5, x r 00 =l^ h −6.901 ; D (short-dashed curve) : x(r0)=2, 
x r 00 =l^ h 0 ;  E (dotted curve) : x(r0)=3, x r 00 =l^ h −13.008 ; F (thin solid curve) : x(r0) = 0.4, x r 00 =l^ h
7.723.  r0 is taken to be 0.02.  The enlarged one in 0 < r < 2 is shown in lower panel. 

Fig. 3　vz1 at z = 1.  The line types and the meanings of the characters A～F are same as in Fig. 2. 
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all these flows because x r 00 !^ h .  However, the rates of the subsequent rise are different : vr 02 i  

increases relatively very rapidly in F.  In this flow, v 0i  diminishes more rapidly than r1 (probably than 

any power of r in the limit r0→ 0) near r = 0, thereby forming a clear eye and eye-wall. 

By taking the limit r 00"  numerically, we observe (but not shown here) that the solutions B and C 

approach A rapidly.  Therefore, the solutions B and C are expected to converge to A, i.e., the Burgers 

solution.  In the same limit, the solution E approaches D slowly.  The flow E is anticipated to con-

verge to D, the Sullivan solution.  The two-cell structured solution F also seems to have r 00"  limit, 

as is depicted in Fig. 5 for v 0i .  However, the direction of the convergence is such that the solution 

gets far apart from D, the Sullivan solution.  Thus we conclude that the type F is the new solution. 

The orbit C of the fictitious particle started from a point x(r0) such that x r1 101 1- ^ h  with a nega-

tive acceleration.  Importantly, if it were given an appropriately adjusted positive acceleration, the 

particle first moved down the slope in Fig. 1, then changed the direction and went up until it reached 

A.  This orbit looks like that of F but is distinct since the initial position is different.

Similarly, the particle started from the point F with an appropriately tuned negative acceleration can 

Fig. 4　 v 0i .  The line types and the characters A～F are of the same meanings as in Fig. 2.  The normaliza-
tion is arbitrary.  The profile C almost coincides with A and is not shown here.

Fig. 5　 r0 dependences of v 0i  for the numerical solution of the eye-type.  Left-most dotted curve : r0=0.02, 
long-dashed curve : 0.01, dash-dotted curve : 0.005, thin solid curve : 0.002, right-most dotted 
curve : 0.001.  The one marked by ‘D’ is the Sullivan solution.  The numerical solution of eye-type 
shifts rightward for r0 → 0.  All are normalized to one.
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reach A at r 3= .  In the limit r 00" , such an orbit seems to coincide with the orbit A, the Burgers 

solution.

Thus we are left with three types of flows : the Burgers vortex, A, the Sullivan vortex, D, and, so as 

to say, the eye-type vortex, F.  These are characterized by the value of /x r r0 vr r1 0;= =l^ ^h h :  

x 0 1A =-^ h , x 0 2D =^ h  and x1 0 1F1 1- ^ h , where the subscript specifies the flow-type.  Probably, 

solutions with any other initial position will converge on one of these three types in the limit r 00" .

The radial direction of the flow of the eye-type vortices changes near the middle point of the eye-

wall.  In the outer and inner regions, the flow directs inward and outward, respectively.  The vertical 

direction of the flow also changes from downward to upward with r at the inner foot of the eye-wall. 

5.  Summary and comments

We presented one example of the NEIV for a new two-dimensional vortex as the solution of the 

Navier-Stokes equation.  The configuration of the velocity field is governed not only by the advec-

tion and the pressure gradient but also by the shear term that is absent in the Euler equation.

The velocity field is assumed to be expanded as an asymptotic series of o.  Then, matching the 

coefficients of the same power of o, a set of differential equations for the expansion coefficients were 

derived.  It is interesting that the 0th- and 1st-order coefficients form a closed set of equations when 

the zero-viscosity limit of the field leaves only the azimuthal component finite.  Before the zero vis-

cosity limit is taken, the flow is of a three dimensional and the singularity observed in the two dimen-

sional flow is avoided (Takahashi 2013). 

In the zero-viscosity limit, the radial and vertical components of the flow vanish.  However, the 

first order coefficient of the radial and vertical components remains finite.  In particular, the radial 

component is directly related to the profile of the final azimuthal component.  Such a ‘Cheshire cat’ 

effect is possible in case the flow is of the multicomponent. 

In gaining the perspective on the nature of the solutions, it was helpful to translate the fluid dynami-

cal equation to the equation of motion of a point particle in a potential deduced from the NS equations 

and the continuity equation.  This method will enjoy finding wide application for solving the NS 

equations. 

In the new solution, the azimuthal flow is structured by an inner eye, an eye-wall and a decaying 

tail in outer region, which are reminiscent to those of typhoon.  The scaling arguments indicate that 

smaller o corresponds to larger Reynolds number.  Probably, taking the inviscid limit is a mathemati-
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cally idealized procedure adaptable for describing the typhoon’s growth and strengthening.    

The o-expansion method may in principle be applicable for small but finite o (see, e.g., Sammartino 

and Caflisch 1998).  In that case, vr1o  and vz1o  are the approximations of the radial and the vertical 

component of the flow that enable us to approximately reconstruct the three-dimensional 

flow.  Whether the asymptotic expansion in ν always converges remains as an open question. 
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