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Classification of the Steady Axisymmetric Vortices

TAKAHASHI Koichi

Abstract : It has been shown that the Navier-Stokes equation for steady axisymmetric vortices
is equivalent to a one-dimensional classical mechanics of a mass point subjected to non-con-
served as well as conserved force. This equivalence is manifested by the v-expansion method
and makes it possible to survey new class of vortex solutions in addition to the Burgers’ and the
Sullivan’s ones. The solutions are classified into three types according to how the mass point
behaves in the potential before the asymptote is approached. Each type has a distinct cell num-
ber. All of the solutions are mutually connected by a continuous route in the parameter space.
A non-local constant common to these solutions is presented.
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1. Introduction

The motion of fluid is modeled by the NS equation that is expressed as
2 Vo
dvtoPo=yPlo—= "+f O

with the obvious notations. There exist two one-parameter steady axisymmetric vortex solutions
whose analytic forms have been exactly known : one was found by Burgers (1948) and the other by
Sullivan (1959). It is customary to discriminate these two solutions by the number of the ‘cells’ that
are characterized by the direction of the flow. Burgers’ vortex has one cell and Sullivan’s vortex has
two.

Recently, it was found that there exist other steady axisymmetric vortex solutions than Burgers’
and Sullivan’s ones by noticing an analogy between the vortex system and a mass point subjected to
non-conserved as well as a conserved force (Takahashi 2014). This analogy was noticed through the
y-expansion method in which the velocity field and the pressure are assumed to be subjected to the
Taylor expansion in v, thereby deriving a set of equations among the expansion coefficients.

In this paper, we first review the method that enable us to translate the vortex flow dynamics to the

dynamics of a mass point and then find the complete list of the types of the steady axisymmetric vor-
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tex solutions that connect the Burgers’ and the Sullivan’s vortices.

2. y-expansion method and the NS equation

In the v-expansion method it is assumed that the velocity field and the pressure are subjected to the

asymptotic expansion in v. For the present purpose, we write in cylindrical coordinate as

Uy = V0r, 2.1
V9 = Vgo, 2.2)
V= W, 2.3)
p=potVip, (24

that are suggested by the invariance of the NS equation under v > —y. Namely, for v, and v,, terms

higher than ! vanish. For vs, terms higher than ,° vanish. For p, terms higher than y? van-

ish. This parameterization implies that, in inviscid limit, , and v, vanish, and v¢ and p remain finite.
Substituting these to (1) and equating the coefficients of terms with the same order of v, we have

the following equations for steady axisymmetric solutions.

(i) 0(")
_”L02+L5 —£=0 3.1
” 0 rPo r 5 .
%azpo —£=0. (32)
(i) O(")
L0, (rom) = Pose— "%, (3.3)
r
L6.(rova) +0-(0v21) = 0. (3.4)
(iii) O(V?)
a}'
vrlarvrl + 52 = Vzvrl - %9 (3'5)
vrlarvz] +vzlazvzl + 6472 = Vzvz]- (3'6)

0

(3.4) is the continuity equation. There are six equations for five unknown functions. (3.1) and (3.2)
will be used to determine the » and z dependences of p, provided that the form of fallows consistent
solutions. (3.3) is used to solve for vgo once v,1 is given. (3.4), (3.5) and (3.6) can be used to deter-

mine v,1, V21 and p,.
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3. Steady vortex solutions

Let us seek solutions in which v,1 and vg do not depend on z. The simplest way to obtain such
solutions is to assume (Burgers 1948, Sullivan 1959)
0;
% = 4k, (“.1)
va=—x(r)z, 4.2)
where £ is an arbitrary constant and x is a function of r only.

Consider first (3.3), which is rewritten as

v(;o"+<17*vrl>vgo'*<% + vr” >WO =0. )
The prime denotes the derivative with respect to 7. It should be noted that, even in the absence of

boundary, the inviscid flow vy is affected from the viscous component v,1. The general regular solu-

tion is given by
— C r ! ¥ vrr
Voo = —2/(; drre’ ( ). 6)

Cis a constant. In order for vg to be finite at infinity, v,1(o0 ) must be negative.

Next consider (3.4) and (3.5). From the continuity (3.4), we have

va=—2(ra) . @)
(7) and (4.2) lead to

vn = [ xrdr. ®)

On the other hand, substituting (7) into (3.6), together with (4.1), yields

w2 n (1 v AV 20,4
Vi +(7_vrl>vrl _<7_%_vr1 )Url + 1;31 +71;21 = 4k 9)

For k # 0, there exist solutions of (9) that behave as v,1 & 7 near » = 0. Thus far two solutions are

known (& is chosen to be positive)
v =—kr, (10.1)
Vs = —kr+6(1—exp(—kr2))/r. (10.2)

The former and the latter are due to Burgers (1948) and Sullivan (1984), respectively.
Note that v, vanishes in the inviscid limit, while v,1 remains effective in determining the observable

vg through (6). This is the phenomenon called the Cheshire cat effect in Takahashi (2014).
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4. Equivalent mass point motion

An insight into the possible global behaviours of the solutions of (9) is gained by rewriting it in

terms of the variable x introduced by (4.2). Together with (7), (9) takes the form
I/ ga— 1 4
x —*x2+4k2+<vr1*7)x . (11)

If we reinterpret r as the ‘time’ and x as the ‘coordinate’ of a particle with a unit mass, then this equa-
tion describes a classical one-dimensional motion of the mass point in the potential U(x) = x*/3 — 4k’x
under the effect of a non-conservative force given by the last term on the r.h.s. of (11). An example
of the form of the potential U is depicted in Fig.1 for 4&* = 1. (This is equivalent to rescale the vari-
ables as x = 2kx, r = #/(2k)"? in (11).)

Multiply the both sides of (11) by x” and rewrite the resultant equation to obtain

%( x; + U(x)> = (vn — %)x'z. (12)

This equation expresses how the particle’s ‘total energy’ temporally varies under the presence of the

non-conservative force. If the Lh.s. of (12) is zero, then the energy is conserved. This situation is
achieved by resting the mass point at one of the extrema of the potential. Discarding the positive

value by the reason already mentioned, the acceptable solution is
r
x=—1or U =Ty (13)

This is depicted as A in Fig. 1, which is nothing but the Burgers vortex solution (10.1) with the energy
of the mass point equal to 2/3. We require any physical solution to asymptotically approach the posi-

tion A in order to avoid too rapid a divergence of the velocity field at » = 0.

Fig. 1 Potential U = x*/3—4k*c, with 4k*=1.  The maximum and minimum points are x = — 1 and 1, respec-
tively. This graph shows why &*> 0 is necessary for physical solutions to exist. For alphabetical let-
ters, arrows and Roman numerals, see the text.
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The mass point at rest at a position other than the extrema begins to roll down the potential
slope. The mass point loses the energy due to the dissipative term —x’%/r that is initially domi-
nant. Even in the case v,1 temporarily acquires positive values, on approaching the point A, the func-
tional form of v,1 should approach —/2, thereby the non-conservative force eventually turns totally
dissipative. By appropriately choosing the initial position, the mass point will approach A at » = . Such
a motions corresponds to the Sullivan’s vortex, for which x(0) = 2. This point is designated by D in
Fig. 1. Its initial energy is 2/3, being equal to the final energy.

When the initial position is B in Fig. 1, then the mass point can climb up the slope if the accelera-
tion x”(0) has a positive sign at B. By appropriately choosing the acceleration, the mass point will
be in the stationary state A at » = ©© (Type I solutions). This is easily confirmed by numerical calcu-
lation, in which the ‘initial time’ is chosen as ry, slightly off the point » = 0. The similar thing holds
for C with negative initial acceleration.

Solutions whose initial position is near D, like E in Fig. 1, can approach the point A if the initial
acceleration is of an appropriate negative value (Type II solutions).

It is conjectured that the mass point at the initial point C or F may have a positive initial accelera-
tion, i.e., x”(r) > 0, to reach the point A at » = co. In this case, the mass point will move down the
slope and then up the opposite slope beyond the local minimum, stops at a certain point x = X, > 1,
turns the direction of motion and goes down and then climbs up toward the point A (Type III solu-
tions). The peculiar characteristics of such motions for the points C and F will be entirely due to the
existence of v,1 in the non-conservative force of our fictitious classical dynamics.

Prominent aspects of these solutions are that x(7)— —coasn — 0 for of Types I and III and

x(m) = 4o for Type I In fact, (11) has a class of solutions that are expanded around » = 0 as

oo

x(r)= 2 aw,(Inr)?, (14)
m=n=0

where a,,, are determined from a,, and a;  as

2 2 2
aio 0,010 ~ l—apy —aip Saopai o

Mi="gT T T, A= 4 + g aro=axy» =0, (15)

app and a;, must be chosen so as for x(r) to asymptotically approach —1. For a given x(r), v
and v are determined by (4.2) and (7). We must restrict m to be 0 or 1.

x(r) generally has a logarithmic singularity at » = 0, which gives rise to the same type of singularity
in v.. Importantly, it gives rise to no divergence in the fluxes of such observable quantities as
momentum or energy. This means that x(r)’s given by (14) with a10 # 0 also are physically accept-

able solutions.
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5. Numerical calculations

aro for Types I and III solutions is positive, while for Type II it is negative. The components v,1
and v-1 of our solution for particular choices of (a1, ao0), together with the Burgers and Sullivan solu-
tions, are shown in Fig. 2.

The zeros of v,1 and v-; for the solutions of Types II and III are evident in Fig. 2. Besides, for the
solution of Type III, there exists one more zero very near » = 0 because of the leading Inr term. In
the terminology of Sullivan (1959), the solutions of Types II and III have a two- and three-cell struc-
ture, respectively. The innermost cell of the solution of Type III may be too small to have any signif-
icant meteorological meanings. (The motion F in Fig. 1 belongs to Type III. In the corresponding
figure in Takahashi (2014), the motion denoted by F was noticed to have two cells. It was due to that
the initial time ‘ry’ chosen in numerical calculations was not sufficiently small. The motion F is in
fact of three cell structure if 7, is chosen to be small enough.)

The pairs of a; yand a,, that permit the solution x with the correct boundary condition form a spiral-
like structure as is shown in Fig. 3(a). The curve is divided into three parts with distinctive charac-

ters. In Fig. 3(a), each part is labeled as I, IT or III according as which of the solutions shown in

(1)

Vaiiz

0 5 - 10 15

Fig. 2 r-dependences of (a) v.1, (b) v-1/z for three possible solutions denoted by I, IT and III, each of which is a
representative of solutions of Type I, II and III, respectively. Parameters (ai0, @oo) for the drawn
curves are 1: (0.41, —0.818), II: (—1.09, 0.266), IIT: (0.2, 1.072). For references, the Burgers
solution (B) and the Sullivan solution (S) are also depicted by broken line (v = 1) and dotted curve,
respectively. 0,1 of the solution I almost coincides with that of the Burgers solution.
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Fig. 2 belongs to.  The point (a0, a90) = (0, —1) corresponds to the Burgers solution. The point (0, 2)
corresponds to the Sullivan solution.

The limit a0 = 0 on the part III leads to another distinct point (0, 1), which has no correspondence
to the solution of the NS equation. This is because the minimum point of the potential U(x) is essen-
tially different from any nearby points. The mass point with zero velocity and zero acceleration at
the minimum point can never go up the slope. Oppositely, the mass point at a position slightly off
the minimum of U slips down the potential slope and then goes up the opposite slope. If the time
during which v > 0 is appropriately adjusted, the mass point can gain sufficient energy to reach the
maximum of U. For this class of solutions, the region in which v,1 > 0 becomes larger and larger
when a; o approaches 0.

For a given a,, there exist two Type III solutions. These are discriminated by the value of x,,, as
is shown in Fig. 3(b).

vgo is determined by (6) and is shown in Fig. 4 together with those of the Burgers and Sullivan solu-
tions. Far away from the maximum point, vs decreases as 1/r. Near the symmetry axis, vgo is pro-
portional to 7 for all three flows. However, the rates of the subsequent rise are different : because of

a large region of positive v.1, Vg0 of the solution III increases relatively very rapidly with r, thereby

] 0.0s 0.1 015 0.2 025
@1
Fig. 3 (a) Spiral-like structure of the parameter set (a;,, o) that yields the vortex solution. Three parts in
the set designated by I (the fourth quadrant), II (the second and the third quadrants) and III (the first
quadrant). Circles at (0, —1) and (0, 2) give the Burgers and Sullivan solution, respectively. (b) Max-
imum values of x for the type III solutions.
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Fig. 4 g determined by (6). The solid curves labeled I, II and III are calculated from the corresponding
solutions I, IT and IIT in Fig. 2. Broken curve and dotted curve are the Burgers (labeled by ‘B’) and
Sullivan (labeled by °S’) solution, respectively. The unlabeled curve is also of Type III with the
parameters (a4, apo) = (0.2, 1.785). All curves are normalized so as to have an equal circulation at
infinity.

forming a distinct ‘eye’ region. The eye region of Type III solution becomes larger as a; o approaches
0. Larger eye region implies smaller peak of vg when the circulation at infinity is fixed. In the
limit a10 = 0, veo with fixed circulation vanishes. In this sense, the vortex loses energy and decays
along the sequence I - Burgers — II - Sullivan —» III - O, where ‘O’ stands for absence of vortex.

For finite v, 0.1, veo and vv-1 give the vortex structure. The radial direction of the flow of the
Types II and I1I changes near the middle point of the ‘eye-wall’ where 0,040 is positive and large. In
the outer and inner regions, separated from each other by the eye-wall, the flow directs inward and
outward, respectively. In inviscid limit, only the azimuthal component remains.

The equation (12) suggests that the non-local quantity C defined by
— 1 7 r 1 7
C= 2+ U+ [ (L —va )edr (16)

is a constant : it does not depend on r for all types of vortices. Choosing r, =+ ©© and recovering
the freedom of the parameter &, C takes a universal value (2/3)4k> for all the solutions. By construc-
tion, C does not depend on v, too. What discriminates the types of vortices may be the cell number,
n,, or the frequency n,, that the orbit x(r) visits the local minimum of U(x) as r varies from 0 to c©. n,
and n,, are related by n. = n,+1. (n., n,) = (1, 0), (2, 1) and (3, 2) for Type I, II and III vortices,
respectively. On the other hand, (n., n,) = (1, 0) for the Burgers’ vortex and (2, 1) for the Sullivan’s
vortex, as is tabulated in Table 1.

What discriminates the Type I and Burgers solutions is the initial value of x, i.e., x(0) = —co and
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Table 1 Continuous sequence of the vortex solutions. ‘O’ represents no solution.

Type I Burgers Type II Sullivan Type 11 (0]

n, 1 1 2 2 3 —
ny, 0 0 1 1 2 —
x(0) —co —1 +oo 1 —oo —

—1 for the former and the latter, respectively. x(0) for other solutions are also given in Table 1.

6. Summary

By solving a closed set of equations derived in the lowest order of the v-expansion scheme, we
found all the steady and axisymmetric vortex solutions for the NS equation that connect the Burgers’
and the Sullivan’s solutions. These solutions called Type I, II and III consist of one, two and three
cells, respectively, and involve the Burgers and Sullivan vortices as the special cases. The innermost
cell of Type III vortex is very small. Its astrophysical implication may be worth exploration. We
also found the route in the parameter space along which the steady and axially symmetric vortex con-
tinuously changes itself along the following sequence : Type I — Burgers - Type II - Sullivan -
Type IIl > O. When the circulation at infinity is kept constant, this route represents the sequence of
the decay of the vortex. The flow profiles in the inviscid limit are uniquely determined. It remains
as an open question whether the Donaldson-Sullivan’s vortex solution (Baker 2000) is similarly

extended.
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