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The Effect of Self-Gravity in Linearly Perturbed  
Euler Equations for a Rotating Thin Fluid Disk

TAKAHASHI Koichi

Abstract : The stability of a rotating thin fluid disk bound by weak self-as well as a central 
gravity is studied within the linearly perturbed Euler equation.  The algebraic equation that the 
eigenfrequencies (EFs) must satisfy is derived and is solved.  In absence of the self-gravity 
within the disk, it has been known that, in addition to the exponential instability caused by the 
imaginary part of EF, the polynomial instability (PI) exists in which the amplitude of the density 
perturbation grows linearly in time.  The exponential instability is occasional, while the PI is 
ubiquitous over the disk. The self gravitation of the disk shifts the phase of the density wave and 
gives rise to a new sinusoidal variation of the EF to the radial direction.  The WKB-like approx-
imation shows that the net effect of the self-gravity of perturbations is to increase the central 
mass.
Keywords : galaxy rotation ; self gravity ; eigenfrequency ; polynomial instability

1.  Introduction

The endeavour to understand the hydrodynamical origin of the structure of spiral galaxies started 

from the works by Lindblad (1948 ; 1964), Toomre (1964), Lin and Shu (1964), and Goldreich and 

Lynden-Bell (1965).  Through successive studies, a close consensus that the arms are density waves 

seems to have been reached, although such problems as on the age, winding direction, metamorphosis, 

etc. of the arms still remain unsolved (For reviews, see Binney and Tremaine 2008 ; Sellwood 2014) .

In theoretical studies, spiral galaxies are frequently treated as thin fluid disks. Equipped with the 

WKB approximation method, the fluid disk models have been widely employed in astrophysical prob-

lems because of their tractability (Griv et al. 2008 ; Binney and Tremaine 2008 ; Roshan and Abbassi 

2015).  There, all radial variations of physical quantities except for the phase oscillation in the radial 

direction are ignored.  Supplemented by the assumption of barotropicity of the fluid, the WKB 

method provides the dispersion relation and the stability condition that govern the dynamics and the 

fate of the spiral structure.

One problem in the WKB approximation lies in that, despite of the starting assumption, the resul-

tant dispersion relation is strongly dependent on the radial coordinate.  Another is the appearance of 



東北学院大学教養学部論集　第 173号

124

singularities in the equations of motion, the Lindblad and the corotation resonances, that require an 

additional careful prescription to deal with them (Goldreich and Tremaine 1979 ; Lubow and Ogilvie 

1998).

In addition to the problem inherent in the WKB method, the density perturbations give rise to 

another obstacle that renders the study to unveil the nature of solitary galaxies complicated. Namely, 

the modulations of gravitational interaction among density perturbations alter the pattern of the pertur-

bations themselves.

How does the density wave form and behave?　The purpose of this paper is to find an answer to 

this question by exploring a solvable disk model of spiral galaxies analysed recently by Takahashi 

(2015).　In this model, together with the viscosity expansion method for the compressible fluid, Taka-

hashi found novel vortical solutions with new radial velocity profiles.  The azimuthal velocity profile 

of these solutions survives in the inviscid limit and thus can be a basic state of the corresponding Euler 

equation.  Furthermore, the resultant density profile is such that the integrated mass is proportional to 

the radial distance from the origin at long distances.  The rotation curves of the disk were found to be 

consequentially consistent with observations.

The stability of the disk model introduced by Takahashi was also explored within the linear pertur-

bations.  It is noticeable that the secular equations can be treated rigorously and the eigenfrequencies 

(EFs) are exactly determined provided that the self-gravitational interaction can be ignored.　The 

remarkable fact is that the EFs are generally dependent on r, the distance from the centre of the disk, 

and is decreasing with r at large distances.  The tight winding of arms of the density wave takes place 

owing to the temporally growing phase -~ rR Wt,  where t is the time variable.  This gives the basis 

for the WKB approximation. In Takahashi (2015), the results of perturbation analysis are concisely 

summarized.

The gravity plays the fundamental role in the dynamics of astrophysical disk.  In Takahashi (2015), 

only centripetal gravity exerted by the central mass is considered.  Of course, the effects of the self-

interaction among the density perturbations are of the greatest interest in the dynamics of galaxy and 

are remained to be clarified.

In this paper, more general arguments of deriving the local EFs are presented.  It will be shown 

that there exist a large number of solutions with distinctive temporal behaviours, of which the solution 

found in Takahashi (2015) is of the simplest one.  The gravitational interaction among the perturba-

tions will also be taken into consideration through the modulations of the gravitational potential.

This paper is organized as follows.  In sec.2, the perturbed Euler equation with the axisymmetric 
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gravity is solved.  A new parameter, s, will be found that distinguishes the temporal behaviours of the 

perturbations.  The local EFs are obtained for the simplest case of s = 0.  A review of the case of the 

central point mass dominance is presented in sec.3.  In sec.4, the algebraic equation for the EF under 

the non-axisymmetric self-gravity interaction is found.  Summary is presented in sec.5.

2.  Linear perturbation of the Euler equation

Following Takahashi (2015), we consider a thin fluid disk of an inviscid and circular flow with the 

inner radius r1.  The velocity field is given in the cylindrical coordinate system (r, i,  z) by 

　　　　　　　　　　　　　　　　                       , � (2.1) 

where vi  is the azimuthal component.  The radial and axial components vanish.  We examine the 

linear perturbation of the Euler equation on the background velocity (2.1) under the action of axisym-

metric gravity.

The small variations of the velocity field, the pressure and the density denoted by 

dv= dvr , dvi , dvzR W, dp  and dt, respectively, are generated at time t = 0.  These are functions of 

radial coordinate r, azimuthal angle i  and t.  In this section, for the sake of transparent arguments, 

we further make three assumptions.  First, the gravitational force

(2.2)

where t rR W is the two-dimensional mass density and G the gravitational constant, that acts on the 

fluid element at r is dominated by the central force exerted by the axially symmetric mass distribution, 

so that the self-gravitational force among fluid elements due to a small perturbation can be neglected, 

i.e., dfGr=dfGi= 0.  Second, deformations are restricted to take place within the disk plane and the 

disk itself does not deform.  Third, vz  is fixed to zero on the disk, i.e., vz=dvz= 0.  The effect of 

the self-gravitation is intriguing and will be treated separately in sec.6.  Then the temporal evolutions 

of the perturbations are governed by the linearly perturbed Euler equations

 (2.3a)

  (2.3b)

together with the mass conservation equation

(2.3c)

v= 0, vi , 0R W

fG=-2rG r2
tr

t lrR W lr d lr ,r1

r#fG=-2rG r2
tr

t lrR W lr d lr ,r1

r#

2t+ r
vi 2iS Xdvr- r

2vidvi -
t
dt

r
vi2 +fGrT Y+

t
2rdp

= 0,

2t+ r
vi 2iS Xdvi+ r

12r rviR Wdvr+ rt
2idp

= 0,

2t+ r
vi2iS Xdt+ r

12r rtdvrR W+ r
1
t2idvi= 0.
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Substituting to (2.3) the density wave form

 (2.4)

for the perturbations, equations (2.3a)~(2.3c) are rewritten as

 (2.5a)

 (2.5b)

 (2.5c)

where u~/~-mX and the prime stands for a differentiation in r and X/ vi/r.   The EF ~ has an r 

dependence for the fluid in differential rotation.  The differentiation of the Fourier factor with respect 

to r therefore yields the factor i l~ t.   Note that, if the set of (2.5a) and (2.5b) is solved for static 

amplitudes A and B in terms of C and D, then the solution for the amplitudes has the factor  

D= 1/ l2- u~2R W with l/ 2 X X+r lX /2R W  being the epicycle frequency, thereby giving rise to the 

well-known Lindblad resonances at l2= u~2.   Any divergence should not be involved in real-

ity.  Since there exist explicit t-dependences in (2.5a) and (2.5c), some of the four amplitudes will 

have temporal dependences.  It is such t-dependences which render our system of equations free 

from divergences mentioned above.

Before entering into details of our arguments, it may be instructive to recall the case of incompress-

ible vortex studied by Kelvin (1880) for vi\ r and Synge (1933) for more general r-dependence (See 

also Ash and Khorrami 1995 ; Takahashi 2013).  They considered the three-dimensional perturba-

tions on the background field (2.1) of incompressible fluid and the corresponding pressure.  The per-

turbations were expressed in terms of a normal Fourier mode with respect to i, z and t.  Then, the 

flow turns out to be stable for axisymmetric perturbations when vi rviR Wlis positive at any spatial 

point.  In such a situation, ~ is real and constant and the explicit t-dependences in (2.5a) and (2.5c) 

disappear.  For nonaxisymmetric perturbations, the stability condition has been found to be more 

intricate and does not seem to be suited to practical use (Ash and Khorrami 1995).

In the followings, by preserving the terms with explicit t-dependence in (2.5a) and (2.5c), thereby 

focusing our interest to the case that ~ rR W is a nontrivial function of r, we will find new solutions 

adapted to compressible fluid.  The result for the simplest case has been summarized in Takahashi 

(2015).  Below, we want to generalize the arguments.

The terms with explicit t-dependence in (2.5a) and (2.5c) must be cancelled by some t-dependences 

in the amplitudes.  We may try the simplest polynomial forms

dvr=Aeimi-i~t , dvi=Beimi-i~t , dp=Ceimi-i~t , dt=Deimi-i~t ,

2t-i u~R WA-2XB+
t
1
lC -i l~ tCR W-

t
1 rX2+fGrR WD= 0,

2t-i u~R WB+ r
r2XR Wl

A+ rt
im C= 0,

2t-i u~R WD+t lA - i l~ tt- r
rtR WlT YA+ r

im
tB= 0,
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 (2.6a)

 (2.6b)

 (2.6c)

 (2.6d)

where the powers of t are positive and the coefficients Ai etc. are functions of r only.  The temporal 

behaviour of the density that is polynomial in t was already noticed by Goldreich and Lynden-Bell 

(1965), but for ~= 0 only (For polynomial instability of plasma, see Smith and Rosenbluth 1990). 

In (2.6), each of the amplitudes A, B, C and D involves four unknown coefficients so that totally 

sixteen unknown coefficients are present, while substituting (2.6) to (2.5) gives sixteen equations.

Therefore, the polynomial expressions (2.6) for the amplitudes are generally necessary and sufficient 

to find non-trivial solutions.  See Appendix A for details. In the followings, we restrict ourselves to 

the minimal case of s = 0 with the non-vanishing coefficients being A0, B0, C0, D0 and D1.　Specifi-

cally, D is a linear function of t :

D = D0 + D1t .� (2.7)

For s = 0, there exist five equations that are linear in five unknown functions A0, B0, C0, D0 and D1, 

in which the first order derivatives of A0 and C0 are involved.  When the unperturbed density is uni-

form and lt = 0, it is possible to eliminate those derivatives, thereby reducing (2.5) to simultaneous 

linear algebraic equations of unknown functions that do not involve their derivatives.  Then, by 

requiring the existence of nontrivial solutions, it is straightforward to derive the algebraic eigenvalue 

equation for ~ :

(2.8a)

where

 (2.8b)

 (2.8c)

Here  XZ/m  is the Doppler-shifted angular frequency and fGr is the r-component of the gravitational 

force (2.2).  A concise explanation on the derivation of (2.8) has been given in Takahashi (2015) and 

is elaborated in Appendix A.

For a given integer m, there generally exist four solutions, two of which are always real.  Both of 

A= Aiti ,i=s-3
s!

B= Bitii=s-3
s! ,

C=t Citii=s-3
s! ,

D=t Ditii=s-2
s+1! ,

Z4- 2+2a- rX2
rfGrR WlU ZZ2-4maZ- maR W2= 0,

Z/
X rR W
~ rR W

-m,

a/ 1+ rX rR W2
fGr rR W , a# 1.
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the other two are either real or complex.  The EFs are obtained from Z as 

 (2.9)

The density wave propagates to the azimuthal direction for m > 0.  Its angular velocity is given by

 (2.10)

The relative speed of the density wave to the fluid flow is given by ZXr/m.

-Re~t is the so-called shape function by which the spiral pattern of the perturbation is determined 

(Binney and Tremaine 2008).  In general, Re~’s are functions of r that vanishes at long distances.　

As t gets large, therefore, the phase factor exp -iRe~tR W rapidly oscillates with the change of r over 

the disk.  This leads to the tight winding of arms, the situation for the WKB approximation to be val-

idated (Binney and Tremaine 2008).

In the WKB approximation, the perturbations are expanded in Fourier components as 

 (2.11)

where the amplitude a is assumed to be a slowly varying function of r, while, with Rek being large, 

the phase factor exp(ikr) is rapidly oscillating.  ~ kR W in (2.11), assumed to have no coordinate depen-

dence, gives the dispersion relation.  We have seen that the correct phase factor is exp -i~ rR Wt" %  
where ~ rR W given by (2.9) has a non-trivial r-dependence.  Does this phase factor have a Fourier 

decomposition like (2.11)?  The answer is generally no except for special cases.  This problem is 

elaborated in Appendix C.

The stability of the axisymmetric perturbation is manifested by setting m = 0 in (2.8a).  The EF of 

the unstable mode is given by Z2= 0, 2+2a- rfGrR Wl/ rX2R W.  The former gives the static solution 

~= 0, which exhibits no temporal dependence (See Appendix B).  Concerning the latter, we have

 (2.12)

If we choose the Newtonian central gravity (2.2) for fGr, (2.12) reads

 (2.13)

where Mr= 2r t lrR W lr d lr0

r#  is the mass inside the radius r.  (2.13) may be compared with the WKB 

result (Binney and Tremaine 2008)

 (2.14)

where k is the radial wave number and, with p being the pressure, vs= dp/dtR W1/2  is the sound velocity.　

~=~ rR W= m+Z rR WR WX rR W.

Xp= m
~ = 1+ m

ZS XX.

a rR Wexp ikr-i~ kR Wt" %

~2= 4X2+ r
1 fGr- rfGrR Wl" %.

~2= 4X2- r
2rGt

rr2t
Mr -1T Y,

~WKB
2 = 4X2+2rX lX -2rGt k +vs2k2,
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The sum of the first two terms is the square of the epicycle frequency.  (2.14) with ~WKB
2 < 0  gives 

the Toomre’s instability condition (Toomre 1964).  The appearance of k is due to replacing the deriv-

ative d/dr in the perturbation equations by ik.

The wave number k does not appear in our model of s = 0.  This is because, when s = 0, the proper 

equation for the EF is not affected from the derivatives of amplitudes.  The situation is intricate in 

the case of s ≠ 0, in which it is impossible to delete the derivative of amplitudes from the linearized 

perturbation equations.  Unfortunately, it is quite difficult to determine how ~ depends on s, which is 

an obstacle in finding the general stability criterion in our model.

The relation between the pressure and the density has been determined not a priori but by the Euler 

equation.  This seems reasonable for weak gravity because, in that case, the density can vary kine-

matically without affecting the pressure.  Thus the sound velocity vs  that is usually determined from 

the barotropic equation of state does not appear in (2.13).

The system of equations (2.5a)~(2.5c) and (2.6) are sufficient to obtain the exact and tractable 

expression for the solution.  It is also applicable at the resonances.  In fact, we can easily find finite 

solutions at the Lindblad and corotation resonance. See Appendix D for details.

3.  Solutions to (2.8) and the polynomial instability

The eigenfrequency equation (2.8) has been solved in Takahashi (2015) for some cases of gravity 

strength.  It may be interesting that complex modes emerge for  m $ 2  when the gravity due to the 

central mass is weak and the disk mass is totally ignored.

Below, we summarize the results for finite gravity.

3.1　Central mass dominance

Let us consider the case in which a mass Mc locates at the centre of the disk of low density and is 

exerting the gravitational force  fGr=−GMc/r2 to the fluid.  The interactions among disk masses are 

neglected.  Noting that (rfGr)′=− fGr for the Newtonian gravitational force, we parameterize a given 

by (2.8c) as

 (3.1)

and rewrite (2.7a) as

 (3.2)

For a given X rR W, it is easy to find numerically the EFs from the roots of (3.2) for arbitrary a defined 

a= 1+ rX2
fGr
/ 1- r3X2

a ,

Z4- 1+3aR WZ2-4maZ- maR W2= 0.
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by (3.1).  The results have been given by Takahashi (2015).  In the followings, we argue the case of 

the flat rotation curve presented in Fig. 2 in the above reference.

The units chosen are 104 ly=3.1×103 pc and 100 km/s for the length and the velocity, respectively.

The unit of time is therefore 104 ly/100 km/s=3×107 yr.  With these units, writing the central mass 

as N times the solar mass, a  is given by

(3.3)

Some typical examples of ~ for a=10 and m = 2 are depicted in Fig. 2 together with ~L!=mX!l  

and ~C=mX  that correspond to the Lindblad and the corotation resonances, respectively.  The sin-

gularities at ~=~L! , ~C,which we shall call the L±- and C-singularity, respectively, are inherent in 

the self-consistent WKB approximation (See, e.g., Binney and Tremaine 2008). From Fig. 2(a), we 

see that it is impossible to avoid all of the singularities.  There exist a bifurcation point A and a 

coalesce point B.  The gross basic patterns of ~’s do not change for other choice of parameter values 

(except for m = 0).

Six branches of Re~ jR W, j = I, II, III, IV, V, VI, are observed in Fig. 2(a).  The branches I, III, IV 

and V are real and are of neutral stability.  The branches II and VI are of complex ones, each of 

which are denoted as II, II’, VI and VI’, where the prime denotes the branch with a negative imaginary 

part.  ~(I) is real and decreases monotonically as r increases.  ~(II) bifurcates at A ( r = rA ≈ 3.8) to 

real ~(IV) and real ~(V).  ~(III) and ~(IV) coalesce to ~(VI) at B (r = rB ≈ 4.2).  The complex ~’s are of 

exponentially growing and decaying modes for dvr , dvi  and dp.

The density perturbation evolves in a way different from the velocity and pressure.  Because the 

amplitude D given by (2.7) is a linear function of time, there exists a section AB in which the eigen-

frequencies are all real but D of all modes grow linearly in time.  This is the ‘polynomialinstability 

a= 1.3#10-10N.

Fig. 1　‌�The model rotation curve vi  (solid curve) and the corresponding circular frequency X  (dotted curve) 
used for calculations of EFs.
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section (PIS)’ (Takahashi 2015).  This linear growth is attributable to the modulation of matter veloc-

ity, by which fast moving matter catches up with or runs ahead of slow matter.  Concerning the den-

sity, all of the four modes are ‘unstable’ in short term because of such one-way amplifications of 

oscillations.

Obviously, the growth rate of perturbations is smaller in PIS than inner or outer region of exponen-

Fig. 2　�Solutions of (5.10) for the rotation curve with k1/k = 1 in Fig. 2 and m = 2.  (a)  Re~ vs. r. ~L! (dashed 
and dot-dashed curves) and ~C (dotted curve) are labelled by L± and C, respectively.  (b)  Im~  vs. r. 
(c)  Im~  vs. Re~.  Parameter values are a= 10, k = 10 ly−2.  vi/r is also shown by dotted curve in (a).
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tial growth.  In reality, no discrepancy in the growth rates of spiral arms in a single spiral galaxy is 

observed.  In other words, the PIS seems not to be preferred in real galaxies.

The bifurcation point A and the coalesce point B shift left or right as α gets smaller or larger, respec-

tively.  We observe approximate linear dependences of rA and rB on a, particularly for large a,  as is 

shown in Fig.3. a=20, which corresponds to 15×1010 solar mass, gives rA>7×104 ly.  Sufficiently 

large central mass expels the PIS too far from the centre of the disk to be observed.

3.2　Finite disk mass

In case a is small, the mass of the disk will play a role.  This corresponds to the existence of the 

dark matter.  Here, we aim at getting an insight into the effect of the disk mass by referring to (2.2) 

for the expression of gravitational force.  After small variations were taken, the strongest inter-matter 

interaction will be the one between dt rR W and the mass inside the radius r

 (3.4)

Since Md is a function of r only, we may express an approximate gravitational force in the variational 

equation (2.3a), i.e.,

 (3.5)

Concerning Md(r), several kinds of behaviour are possible near the disk centre, while, for r→∞ , Md 

grows linearly in r (Takahashi 2015).  Once t rR W is fixed, finding the EFs numerically is a rather 

easy task. Grossly speaking, the distributions of EFs are determined by la =a+<GMd>, where 

<GMd> is some characteristic value of GMd(r).  In other words, the stability of the massive disk is 

very similar to the one that consists of a central mass with a modification a" la  that has been consid-

Md rR W= 2r t lrR W lr d lr .r1

r#

fGr=- r2
a - r2

GMd rR W .

Fig. 3  rA and rB as functions of a .  Values of other parameters than a  are same as those in Fig. 4.



The Effect of Self-Gravity in Linearly Perturbed Euler Equations for a Rotating Thin Fluid Disk

133

ered in the previous subsection.

4.  Effect of perturbed gravitation

We here estimate the effects of the self-gravitation due to the density variation within the disk.　

The perturbation equations (2.3a) and (2.3b) are modified by equating l.h.s. of these equations to the 

gravity modulation d fGr and d fGi ,  respectively, where d fGr , d fGiR W=-2r , r-12iR WdU  and

(4.1)

where dt rR W=dt rR Wd zR W with dt rR W=dt rR Wd zR W being given by (2.4).

The resultant integro-differential equations may be converted to the higher order differential equa-

tions with use of Poisson’s equation U2dU= 4rGdt rR W.   The eigenvalue equations corresponding 

to (2.5) now involve terms of the second and third powers of t, which renders the problem awk-

ward.  Instead, in order to see the effect of self-gravitation, it is convenient to seek an approximate 

expression for UdU  that has an explicit factor eimi-i~mt  that is common to all the perturbation ampli-

tudes.  For this purpose, with the help of the Gauss integration formula, we express (4.1) as

(4.2)

where Im is the modifies Bessel function of the first kind.

We restrict ourselves to the case that there exist the wound spiral arms of density modulation, i.e., 

m≥1 and to the point far from the core region, i.e., r>r1 where r1 is the inner radius of the disk.  Fur-

thermore, we assume that r′D(r′)Im (2rr′s2 ) rapidly approaches zero as r′→0 and the integration in (4.2) 

is governed by the form Im zR W+ ez/ 2rz  with a restriction z > 1.   In terms of the variables lr and s, 

this implies s> 1/ 2r lr .　Then dU may be approximated by

 (4.3)

Next, the r′-integration is performed by replacing e- lr -rR W2s2 by d lr -rR W r /s, which will be valid 

when D rR W  is very small near r1 and ~ rR Wis slowly varying.  Thus we have

dU r, tR W=- 4r
G

lr -r
dt rR W# d lr ,

dU r, tR W=- 4r
G

lr 2-2r lr cos li -iR W+r2
D lr , tR Weim li -i~ lrR Wt

lr d lr d li#

=-
r

Geimi D lr , tR We-i~ lrR Wte- lr 2+r2R Ws2Im 2r lr s2R W lr d lr ds0
3#

0
3#

dU+-
2r r
Geimi

lr d lr D lr , tR We-i~ lrR Wte- lr -rR W2s2
s
ds .

1/ 2r lr
3#

r
1

3#
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(4.4)

If the factor r on the r.h.s. of (4.4) is replaced by DR, the pitch of winding of spiral arms, then the 

expression (4.4) is essentially same as the expression obtained by the WKB approximation (see, e.g., 

Binney and Tremaine 2008).  Write ~1=Re~.　In the decreasing region of ~1, then, DR  for trail-

ing spirals in our model is related to ~  by

 (4.5)

Expanding ~1 r+DRR W in DR  up to the second order, we have

 (4.6)

For ~1.w1/r p with w1> 0  and p>0, (4.6) leads to

 (4.7)

In the region where r p/t+w1p/ 4rm p+1R WR W, therefore, (4.4) is equivalent to the result by the WKB 

approximation.

The contribution of perturbation to each component of fG is given by

(4.8a)

 (4.8b)

Placing (4.8a) and (4.8b) with their Fourier factors being deleted on the r.h.s. of (2.5a) and (2.5b), 

respectively, yields the modified equations of perturbations.　In this modification, a replacement of 

gravitational force

(4.9)

is taking place in (2.5a).  Since fGr is negative, this replacement acts to enhance (suppress) the effect 

of gravity by the central mass if D′/D is positive (negative) as long as the radial motion is concerned. 

As the time elapses, the change in the phase indefinitely develops.

A, iB, iC and D are chosen to be real when d fG  is neglected.  Therefore (2.5) and (4.8) mean that, 

concerning the azimuthal motion, the self-gravitation gives rise to the phase shifts.  An additional 

effect of d fGi on (2.5) is that the amplitude A, B or C will acquire a term linear in t because D with m≥ 

1 is already linear in t.

dU+- 2r
Geimi D r, tR We-i~ rR Wt

s
r

s
ds

1/ 2 rR W
3#

=-
2r
GD reimi-i~t.

~1 r+DRR W-~1 rR W=-2rm/t, m $ 1,

DR. p+1
r -r p+1R W21 - w1p p+1R Wt4rmr p .

d fGi=- r
12idU+ 2r

im GDeimi-i~t.
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The derivation of the eigenfrequency equation is straightforward but cumbersome.  The details are 

relegated to Appendix E.  The result is

 (4.10)

where P/-rX2-fGr=-rX2a  and f/ Grt/ 2rR Wl.   Z and a have been defined by (2.8b) and 

(2.8c), respectively. (4.10) reduces to (2.8a) for f= 0.

It has been proved in Takahashi (2015) that t\ 1/r for large r, so that f will asymptotically behave 

as 1/r2.　Furthermore, on the basis of the analyses in Takahashi (2015), it is easy to show that the 

next-to-leading term is d－2/r2 with d－2 > 0 for the family of solutions with constant rotation curves.　

Therefore, in such solutions, rtR Wl\ 1/r2< 0  for r"3, meaning that the effect of the intra-disk inter-

actions at long distances on the eigenfrequencies is equivalent to increasing the central mass of the 

disk.  The increase of the central mass is reflected as the increase of the parameter a in (3.1).　From 

Fig. 3, this implies that the PIS is expelled toward the outer region of the disk.

5.  Summary

The linearly perturbed Euler equations were solved for an axially symmetric and differentially 

rotating thin fluid disk bound by a central gravity and/or pressure gradient.  The self-gravitational 

interaction among the fluid elements was approximately taken into account.  The algebraic equation 

for the EFs was obtained.  The EFs depend on a parameter s which specifies the polynomial structure 

of amplitudes in time variable t.  The case of s = 0 that corresponds to the previous work was solved. 

The EFs are all real in some cases, can be complex in the other, depending on the relation among the 

gravitational force, centrifugal force and pressure gradient.  In all cases, the amplitude of density per-

turbation grows linearly in time, irrespective of the form of rotation curve.  In this sense, the axially 

symmetric rotating thin fluid disk is unstable.

The self-gravity due to perturbations is approximately estimated by the saddle point method and is 

found to yield an effect equivalent to increasing the central mass.  Accordingly, the PIS is shifted fur-

ther outward of the disk.

The system considered does not have one to one correspondence between the density and the pres-

sure. Namely, the fluid must be baroclinic.  Specifically, the density modulation takes place as a con-

sequence of velocity modulation and occurs at zero pressure.  This is the reason that the stability 

Z4-
X2
P+fR Wl

+ rX2
P+f +

X
2r lX +4U ZZ2+4m rX2

P+f Z-m2

rX 2
P+fT Y2= 0,
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condition of our system does not take the form of Toomre’s (Toomre 1964).

Appendix A : Equations for the amplitude coefficients in (2.6)

In this appendix, we derive the equations for the coefficients in the polynomials (2.6).  Substituting 

(2.6) to (2.5) and matching the coefficients of the same powers of t, we have (All suffices are zero or 

positive integer.)

(A1)

(A2)

(A3)

where -P/ rX2+fGr is the sum of the centrifugal force and the gravity (per unit mass).  In other 

words, P  is the pressure gradient per unit mass of the unperturbed system.  Here the suffix of each 

amplitude stands for the associated power of t.  (A1) ~ (A3) are rewritten as

 (A4)

 (A5)

 (A6)

(A7)

(A8)

 (A9)

 (A10)

(A11)

(A12)

 (A13)

(A14)

 (A15)

(A16)

i+1R WAi+1-i u~Ai-2XBi+ lC i+ t
lt
-i l~T YCi-1+PDi= 0,

i+1R WBi+1-i u~Bi+ r
r2XR Wl

Ai+ r
im Ci= 0,

s-3R WAs-3= 0,

s-2R WAs-2-i u~As-3-2XBs-3+Cs-3l+ t
lt Cs-3= 0,

s-1R WAs-1-i u~As-2-2XBs-2+Cs-2l+ t
lt Cs-2-i l~ Cs-3+PDs-2= 0,

sAs-i u~As-1-2XBs-1+Cs-1l+ t
lt Cs-1-i l~ Cs-2+PDs-1= 0,

i l~ Cs-PDs+1= 0,

s-3R WBs-3= 0,

s-2R WBs-2-i u~Bs-3+ r
r2XR Wl

As-3+ r
im Cs-3= 0,

s-1R WBs-1-i u~Bs-2+ r
r2XR Wl

As-2+ r
im Cs-2= 0,

sBs-i u~Bs-1+ r
r2XR Wl

As-1+ r
im Cs-1= 0,

i u~Bs- r
r2XR Wl

As- r
im Cs= 0,

s-2R WDs-2+As-3l+ rt
rtR Wl

As-3+ r
im Bs-3= 0,

s-1R WDs-1-i u~Ds-2+As-2l-i l~ As-3+ rt
rtR Wl

As-2+ r
im Bs-2= 0,
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 (A17)

 (A18)

 (A19)

From (A4), (A10) and (A15), we have As−3=Bs−3=Ds−2=0 for general s, thereby leaving thirteen 

equations for thirteen unknowns.

Since these equations involve the derivatives of amplitudes, further approximation that replaces the 

derivative by ik is usually invoked.  This is noting but the one that consists of the WKB method. 

However, when s = 0, (A4) ~ (A19) enables us to derive the exact algebraic equation that the EFs sat-

isfy as is explained in Appendix B.

Appendix B : The case of s = 0

In this appendix, we derive (2.8a) for the eigenfrequency ~.  Let us consider the case of s = 0 in 

Appendix A.  Recalling that the coefficients with a negative suffix identically vanish, (A4) ~ (A19) 

reduce to

 (B1)

 (B2)

 (B3)

(B4)

(B5)

Here A ≡ A0, B ≡ B0 and C ≡ C0.  As mentioned above, the wave number k may be introduced in (B3) 

and (B5) by the replacement d/dk→ik.  We will see below that ~for v=0 does not depend on k.

There exist five equations for five unknown functions A, B, C, D0 and D1.  By using (B1) and (B2), 

C and D1 are expressed in terms of A, thereby C and D1 can be eliminated from (B3)~(B5) to yield

(B6)

(B7)

sDs-i u~Ds-1+As-1l-i l~ As-2+ rt
rtR Wl

As-1+ r
im Bs-1= 0,

u~Ds+1+ l~ As= 0.

PD1= i l~ C,

u~D1+t l~ A= 0,

i u~A+2XB-
t
P D0= t

1
lC ,

i u~B= r
r2XR Wl

A+ rt
im C,

i u~D0-D1- r
rtR Wl

A-t lA - r
im
tB= 0.

tP
u~

u~
tPT Yl-

P
u~2# &A+2iX

P
u~ B= i u~

t
D0 - lA ,

i u~B= r
r2XR Wl

- r
m
u~
P# &A,
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 (B8)

From these equations, i u~D0/t- lA  is eliminated and we have two linear equations of A and B :

 (B9)

Note that no derivatives of amplitudes are involved in (B9), which enables us to resort to no further 

approximation. Nontrivial solutions exist when det G = 0 or

 (B10)

(2.7a) in the text is obtained by rearranging (B10).  D0, the initial density perturbation, remains unde-

termined. 

In the text, we have seen that the EF equation for m = 0 gives a solution ~= u~= 0.  In this case, 

however, the matrix elements of G are undetermined, so that we have to go back to the original equa-

tions (B1)~(B5).  We readily have

(B11)

 (B12)

(B11) means that the amplitude of the density perturbation does not have the t-dependence. (B12) 

expresses the balance of the pressure gradient and the centrifugal force.

Appendix C :  Impossibility of Fourier transformation of exp -i~ rR Wt" %

Here, we show that the double Fourier transformation of exp -i~ rR Wt" % generally does not exist.　

Suppose that ~ rR Wis a real, continuous and non-constant monotonic function of r and that the expres-

sion

 (C1)

is possible. Here the integration in (C1) is supposed to be well-defined, so that the order of integra-

tions is always interchangeable. Multiplying both sides by exp iotR Wand integrating them with respect 

to t over −∞ < t < +∞ , we have

 (C2)

Further multiplication by exp(−ikr) and integration with respect to r over −∞ < r < +∞ yields

i u~
t
D0 - lA + u~

l~ - rt
rtR Wl# &A- r

im B= 0.

G
A
iB
U Z/ tP

u~
u~
tPT Yl-

P
u~2
+ u~
l~ - rt

rtR Wl
2X
P
u~ - r

m

r
r2XR Wl

- r
m
u~
P - u~

U Z AiBU Z= 0.

tP
u~2

u~
tPT Yl-

P
u~3
+ l~ - rt

rtR Wl
u~+ 2X

P
u~ - r

mS X r
r2XR Wl

- r
m
u~
P# &= 0.

A=D1= 0,

lC +PD0= 2tXB.
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 (C3)

where r1 is the root of ~ rR W= o and w1= d~/dr/ r=r1 . r1 oR W,w1 oR W  and a k, oR Ware continuous functions 

of o.   (C3) is the formal expression for the Fourier transform of exp -i~ rR WtR W.
Now, evaluating (C1) at t = 0 yields

(C4)

where the integration variables are changed by x = kr and y = o/r.  The integration in (C4) must not 

depend on r. This is possible when the dependences of a(x,y) on x and y appear through xy, i.e., a(k, o) 

is a function of ko.  Together with (C3), this requires w1 be a constant and r1 be proportional to o.　

Since r1 is a root of ~ rR W= o,  the proportionality of r1 to o is assured when ~ is a linear function, or

 (C5)

Of course, constant ~ is also allowed, i.e.,

 (C6)

For other forms of ~, consistent Fourier transformation of the form given by (C1) will not exist.

Appendix D :  Resonances

There exist two cases in which the system (A1)~(A5) must be treated carefully for nontrivial solu-

tions.

1.  Lindblad resonances : Let the external force and the pressure be zero, i.e., C=P= 0.   Then 

we have

 (D1)

 (D2)

 (D3)

(D4)

where u~/~-mX.  (D2) and (D3) lead to the condition for the Lindblad resonances, u~2= l2,  

where lis the epicycle frequency.  The amplitudes at the resonance are obtained by solving, e.g., the 

equation for A :

 (D5)

~ rR W=w1r.

a k, oR W=d kR Wd o-~R W.

u~D1+t l~ A= 0,

u~A-2XiB= 0,

u~iB= r
2r r2XR W

A,

lA + rt
2r rtR W A+ r

m iB-
t
u~ iD0+ t

1 D1= 0,

A
lA + rt

rtR Wl
+ u~

1
l~ + r2

m r2XR WlU Z-
t
u~
A
iD0 = 0.
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(D5) does not bear the singularities associated with the Lindblad resonances.

2.  Corotation resonance : By definition, u~= 0.   In order for (A1)~(A5) to have nontrivial solu-

tions, we impose additional conditions

(D6)

where p and hare arbitrary finite functions of r.  Then, we have

 (D7)

 (D8)

 (D9)

 (D10)

(D11)

There are five equations for four unknown amplitudes.  The equation corresponding to (D5) is

 (D12)

h puts the boundary condition.  p is used to keep the consistency.

At present, whether the dynamical systems (D1)~(D4) and (D7)~(D11) in fact have physically 

meaningful solutions is an open question.

Appendix E :  Taking account of gravity within perturbed disk

The density perturbation gives rise to the modulation of gravity, which in turn modifies the per-

turbed Euler equations and the continuity equation as follows :

 (E1)

 (E2)

(E3)

where the amplitudes C and D have been assumed to be linear in t.  Comparing the terms of t2, t1 and 

t0, we have

u~
P =p, u~

l~ =h,

pD1=hiC,

D1+thA= 0,

2XB=
t
1
lC ,

r
r2XR Wl

A+ rt
m iC= 0,

t lA + r
rtR Wl

A+ r
m
tiB+D1= 0.

1- 2rX
r2XR WlU Z AlA + rt

rtR Wl
- 2trX
t r2XR WlR Wl

=h.

-i u~B+ r
r2XR Wl

A+ rt
im C0+tC1R W= im

2r r
Gr D0+tD1R W,

D1-i u~ D0+tD1R W+t lA - i l~ tt- r
rtR WlT YA+ r

im
tB= 0,
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t2 :

(E4)

t1 :

 (E5)

(E6)

 (E7)

t0 :

 (E8)

(E9)

(E10)

where P=-rX2-fGr.  Since (E4) and (E6) are equivalent, we are left with six equations for seven 

unknown functions A, B, C0, C1, D0, D1 and ~.

We aim to obtain an equation of a single amplitude, say, A.  From (E4) and (E7), we readily have

(E11)

(E12)

Rewrite (E8), (E9) and E(10) as

(E13)

(E14)

(E15)

respectively.

Eliminate C1 from (E4) and (E5) as

Rearranging the terms with a use of (E11), we have

 (E16)

C1= 2r
Grt D1

rt
im C1= 2r

imG D1,

-i u~D1- l~ tA= 0,

-i u~B+ r
r2XR Wl

A+ rt
im C0= im 2r

G D0,

D1-i u~D0+t lA + r
rtR Wl

A+ r
im
tB= 0,

D1=- u~
l~ t A,

C1=- 2r
Grt

u~
l~ t A.

i u~A+2XB=
t
1 C0- 2r

Grt D0U Zl+
t
1

2r
GrtU Zl+P# &D0,

r
r2XR Wl

A-i u~B=- rt
im C0- 2r

Grt D0U Z,

lA + rt
rtR Wl
- u~
l~U ZA+ r

im B-i
t
u~ D0= 0,

2r
GrtU ZlD1-i l~ C0+PD1=- l~

2r
Grt D0

C0- 2r
Grt D0= i 2r

GrtU Zl+P# & u~t A.
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Substituting (E16) to (E13) and (E14), with f/ Grt/ 2rR Wl

(E17)

(E18)

(E17), (E18) and (E15) for A, B and D0 are remaining. (E18) is used to eliminate B from (E15) and 

(E17) as

 (E19)

(E20)

respectively.  From (E19) and (E20), one can eliminate lA -i u~/tR WD0  to obtain

where a use has been made of the relation ~= u~+mX.   Assuming that A ≠ 0, the eigenfrequency 

equation (4.10) that takes the self-gravity into account is obtained.

References

Ash R L and Khorrami M R 1995　Vortex stability in Fluid Vortices (ed. Green S I, Kluwer, London) 
317.

Binney J and Tremaine S. 2008　Galactic Dynamics Princeton Univ. Press.
Goldreich P and Lynden-Bell D 1965 II.  Spiral arms as sheared gravitational instabilities MNRAS 130 

125.
Goldreich P and Tremaine S 1979　The excitation of density waves at the Lindblad and corotation reso-

nances by an external potential ApJ 233 857.
Griv E, Liverts E and Mond M 2008　Angular Momentum Transport In Astrophysical Disks ApJ 672 

L127.
Kelvin L 1880　Vibrations of a columnar vortex Phil. Mag. X 155.
Lin C C and Shu F H 1964　On the spiral structure of disk galaxies ApJ 140 646.
Lindblad B 1948　On the dynamics of stellar systems MNRAS 108 214 ; 1964 On the circulation theory 

of spiral structure ApNr 9 103.
Lubow S H and Ogilvie G I 1998　Three-dimensional waves generated at Lindblad resonances in ther-

mally stratified disks ApJ 504 983.
Smith R and Rosenbluth M 1990　Algebraic instability of hollow electron columns and cylindrical vor-

tices Phys. Rev.Lett. 64 649.
Roshan M and Abbassi S 2015　On the stability of a galactic disk in modified gravity ApJ. 802 9.
Sellwood J A 2014　Secular evolution in disk galaxies Rev. Mod. Phys. 86 1.

u~A-2XiB+
t
i
P+fR WD0= t

1
P+fR W

u~
tS XlA+ P+fR W

u~
t
lA# & ,

-i u~B+ r
r2XR Wl

A= r u~
m
P+fR WA.

lA + rt
rtR Wl
- u~
l~U ZA+ r u~

m
r
r2XR Wl

- r u~
m
P+fR W# &A= i

t
u~ D0,

t u~A-2X u~
t

r
r2XR Wl

- r u~
m
P+fR W# &A+ P+fR WiD0= P+fR W

u~
t
lA + P+fR W

u~
tS XlA.

t u~-2X u~
t

r
r2XR Wl

- r u~
m
P+fR WU Z- P+fR W

u~
tS Xl# &A

=- P+fR W
u~
t

rt
rtR Wl
- u~
ul~ + r l~

m 2X- r u~
m
P+fR WS X# &A,



The Effect of Self-Gravity in Linearly Perturbed Euler Equations for a Rotating Thin Fluid Disk

143

Synge J L 1933　The stability of heterogeneous liquid Trans. Roy. Soc. Canada 27 1.
Takahashi K 2013　Multiple peaks of the velocity field as the linear perturbation on the non-Eulerian 

inviscid vortex Tohoku Gakuin Univ. Review 166 1 <http://www.tohoku-gakuin.ac.jp/research/
journal/bk2013/pdf/no10_02.pdf>.

Takahashi K 2015　Application of the viscosity-expansion method to a rotating thin fluid disk bound by 
central gravity PTEP 073J01.

Toomre A 1964　On the gravitational stability of a disk of stars ApJ 139 1217.



東北学院大学教養学部論集　第 173号

144

誤り訂正

東北学院大学教養学部論集 第 171 号 pp 105-146 高橋光一『単純渦と台風』

温度計算のコードに誤りがあり訂正した。結果，p 133 図 6.1 と p 135 図 6.3 を次の図で置

き換える。同時に，文中の「図 6.3」をすべて「図 6.2」と読み替える。その他，図の説明文

および本文に変更はない。計算の詳細は改めて報告する予定である。

図 6.1

図 6.3（図 6.2 と読み替え）


