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Abstract : By treating the viscosity in the Navier-Stokes equation as an independent dynamical 
degree of freedom, a new model for the mean fields in turbulence is proposed. The equation of 
motion of the viscosity field is determined by resorting to three working hypotheses:i) The vis-
cosity inversion invariance in the Navier-Stokes equation should hold in the new equations. ii) 
The potential energy of the continuum should be minimized. iii) Both of the action and reaction 
between the velocity field and the viscosity field should be taken into account. The velocity 
field and the viscosity field in the model are respectively interpreted as the mean velocity and the 
eddy-viscosity. When applied to flows in a channel or a circular pipe with large Reynolds num-
bers, the model semi-quantitatively reproduces the feature of the mean velocity and a Reynolds 
stress observed in experiments in the whole spatial region without recourse to damping functions 
introduced by hand in prevalent eddy-viscosity models.

1. Introduction

Fluid bounded by walls shows complex flow patterns called turbulence accompanied with swirlings 

of various scales that cause fluctuations. Its averaged flow pattern is affected from such small struc-

tures as waves and eddies. These are frequently formed through interactions with wall that generates 

vorticity and effectively modify the viscosity and in turn the property of the mean flow. Owing to 

such a circumstance, the wall, in addition to the fluid itself, looks in its vicinity like an independent 

generator of viscosity.

The distinctive viscosity profiles near the wall are conveniently understood in terms of such distinc-

tive physical laws as the Prandtl’s wall law and the Kármán’s velocity defect law at the vicinity of and 

the place sufficiently far from the wall, respectively. The logarithmic behaviour of the velocity field 

can be derived from these laws (Izakson 1937, Milikan 1939), as well as by the Prandtl’s mixing-

length theory (Prandtl 1933). In phenomenology, it is customary to introduce damping function(s) as 

was proposed by van Driest (1956) in the expression for the mixing length in order to keep quantita-

tive consistency with the experiments (Laufer 1951, Klebanoff 1954, Wei and Willmarth 1989, 

Zanoun et al. 2008).

 A vast amount of works have been made to understand the flow profile as a whole from not piece-
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wise independent principles but a unified view point. For instance, the k-ε model (Jones and Laun-

der 1972, Launder and Spalding 1974, Bailly and Comte-Bellot 2015) treats the kinetic energy k of 

the flow and its average dissipation rate ε as independent local fields to be transported, thereby puts 

the Reynolds equations into a closed and computationally tractable form. Specifically, in the k-ε 

model, the dissipations of k and ε are governed by a spatially and temporally dependent dissipation 

coefficient constructed from k and ε themselves. The model is successful in providing good fits to 

data for mean of turbulence in channel flow in the whole spatial region, at the cost of introducing sev-

eral adjustable free parameters and functions. In order to gain better fitting to experimental data, 

models other than the k-ε model have also been proposed, which are mutually discriminated by the 

physical quantities incorporated in models, the number of parameters and the functional form of 

damping functions. For later developments in this field, see, e.g., Nagano and Tagawa (1990), Suga 

(1998) and Karimpour and Venayagamoorthy (2013) and references cited therein. A concise review 

has been provided by Bredberg (2001).

It is desirable to find succinct and tractable models that enable us to understand the mechanism of 

turbulence by grasping the fundamental physical processes. Chen et al. (1998) solved their Reyn-

olds-averaged Navier-Stokes (N-S) equation to find analytic expressions of velocity and Reynolds 

stress in uniform and isotropic turbulence. The N-S equation modified by considering random 

inelastic molecular collisions as a part of dissipation allows analytic solutions for the mean of turbu-

lence (Jirkovsky and Muriel 2012). There exist other efforts toward understanding the statistical law 

of turbulence from the first principle. See, e.g., references cited in Frewer et al. (2016). So far, 

however, some important empirical aspects of turbulence like scaling laws over the larger region of 

the flow are left unexplained. Apart from studies by computer simulations for engineering purposes, 

the construction of a model that can be subjected to mathematical analysis with clear physical or 

mathematical reasoning seems still unsatisfactory.

 In this paper, noting that the dissipation coefficient in the k-ε model appears as the effective viscos-

ity, we pursue an alternative possibility of treating the viscosity as an independent dynamical field.  

This idea, being natural due to the origin of viscosity mentioned at the beginning, also emerges when 

we notice that changing in the sign of viscosity coefficient still bears a physical meaning. In fact, 

Lilly (1992) found that the eddy viscosity in the so-called dynamic Smagorinsky model (Germano et 

al. 1991) the eddy viscosity could be negative and interpreted this phenomena as a result of inverse 

transport of energy from small to large lattice scale. To this we also add two facts. i) The steady 

vortex solutions to the N-S equation are allowed after changing the sign of the viscosity (Takahashi 
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2015). ii) When the sign of the viscosity is changed, the Oseen’s vortex (Oseen 1911) strengthens in 

the course of time, which has many observational counterparts in nature. Since the viscosity field 

will vary through diffusion and advection, the conventional transport mechanism will play a role to 

govern the temporal and spatial behaviour of the field. If the viscosity can be effectively treated as 

an independent field variable, the cumbersome procedure of relating the viscosity to diffusive physical 

ingredients and other controlling factors in fluid will be greatly lightened.

 In the next section, the model for the mean field of turbulence with the dynamical viscosity is pre-

sented. In sec.3, the mean velocity for a channel flow is calculated within the model defined in sec.2.  

In sec.4, one component of the Reynolds stress in a channel flow is calculated and a comparison with 

the mixing-length theory is made. In sec.5, the result of applying the model to turbulence in a circu-

lar pipe is briefly mentioned. The last section is devoted to summary and some remarks.

2.  Mean field equation

The N-S equation for the motion of the incompressible fluid with no external body force is given 

by

 2tu+u$Uu=U$ oUuR W-Up/t,  (2.1)

which is constrained by the incompressibility condition

 U$u= 0.  (2.2)

u is the velocity field, t the density, p the pressure and o the kinematic viscosity. We replace o in (2.1) 

by a space-time dependent function as

 o" roz  (2.3)

with ro  being a constant for the representative kinematic viscosity in absence of the velocity gradient.  

The newly introduced dimensionless function z is a local field that is to express the spatio-temporal 

variance of viscosity. Then, (2.1) describes how the action of z affects the velocity.

 Let us find out the equation that z obeys by resorting to some working hypotheses. When the 

velocity gradient does not exist, z must be static and unity. Under this circumstance, the equation for 

z, Q zR W=0, should give a constant as the solution, say, z=1. For simplicity, we may assume Q zR W 
to be a regular function of z. Next, we require that the invariance of the dynamics under the viscos-

ity inversion o → −o or z → −z, which changes dissipation into cohesion, for steady simple vortices 
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be preserved (Takahashi 2015). This means that Q zR W is an even function of z. The simplest one 

that fulfils these requirements is 

 Q zR W= m1 z2-1R W/2  (2.4)

where m1 is a constant.

 The deviation of z from unity will be caused by the local fluctuations of the temperature, the pres-

sure and the flow structures (i.e., waves and/or eddies), which are carried away by the flow and dif-

fuse. Together with the advection and the diffusion terms that will describe such processes, the equa-

tion for z may be written as

 2tz+u$Uz= m0U2z-Q zR W.  (2.5)

m0 is a positive constant.

 However, (2.5) is insufficient in that it does not incorporate the reaction of the velocity field on z 

that would exist owing to the first term on r.h.s. of (2.1) with (2.3). We shall determine the reaction 

term by requiring the energy of the steady state be a local minimum. For this purpose, let us note 

that the N-S equation satisfies the ‘variational’ equation

 2tu+u$UuR W$du+du$
du
d rozUuR W2/2+u$Up+tR Wdr= 0#  

for small variation du. Here, . Similarly, for z, (2.5) means the following ‘vari-

ational’ equation

 2tz+u$UzR Wdz+dz
dz
d

m0UzR W2/2+m1 z3/3-zR W/2" %dr= 0.#  

Thus, if a unified variational principle existed, it would be equivalent to

 dL/2tu+u$UuR W$du+s oz+u$UzR Wdz+d Udr,#  

where 

 U u, zR W= 2
ro
zUuR W2+

t
1 u$Up+s 2

m0 UzR W2+ 2
m1

3
z3

-zT Y# &,  (2.6)

is ‘the specific potential energy’ of the continuum. ϖ is a constant with the dimension of velocity 

squared, which is introduced to adjust the dimension.  corresponds to the ‘variation of the 

action’. Then, dL=0 under the ‘variation’ of u yields the expression on r.h.s. of (2.1) from the first 

and second terms in (2.6).

Similarly, the r.h.s. of (2.5) emerges from the last two terms in (2.6) by the variation of z. In addi-
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tion to these, the first term on r.h.s. of (2.6) gives rise to a new term -roUuR W2/2 . Then, by the same 

procedure that led to (2.1), we have, instead of (2.5), the equation

 2tz+u$Uz= m0U2z- 2
m1 z2-1R W- 2s

o UuR W2.  (2.7)

Because of (2.4), the steady and uniform solutions z = +1 is locally stable (unstable) if m1 is positive 

(negative) and vice versa for the other solution z = −1. We assume m1 > 0. Our model is defined by 

the dynamical system (2.1), (2.2), (2.3) and (2.7). It will later turn out that z is directly related to the 

eddy viscosity.

 In case the system is diffusive, the deterministic least action principle known so far is for Lagrange 

description in which the path of the fluid element is treated as stochastic variable (Yasue 1981, Nak-

agomi et al. 1981, Cipriano and Cruzeiro 2007, Constantin and Iyer 2008, Eyink 2010 and references 

cited therein). In contrast, our procedure that leads to (2.7) is not founded on the standard action 

principle because dL is not the total derivative. This problem is expected not to cause a serious 

defect of our model construction, as will be remarked in the last section.

For brevity, we shall call the model defined by (2.1), (2.2), (2.3) and (2.7) the dynamical eddy vis-

cosity model (DEVM). This model is seemingly analogous to Spalart and Allmaras’s one equation 

eddy viscosity model (OEEVM) (Spalart and Allmaras 1992) in that the viscosity is treated as dynam-

ical variable in both approaches. OEEVM, like our model, also includes the quadratic ‘destruction’ 

term in the transport equation of the viscosity to take the wall-blocking effect into account. The 

major difference lies in that, while the common practice in the eddy viscosity models is to employ the 

Reynolds-averaged N-S equation, our model utilizes the generalized N-S equation for mean flow in 

which the Reynolds stress does not explicitly appear. Our model is also featured by involving no 

adjustable damping functions, which is in contrast to the prevalent eddy viscosity models including 

OEEVM. In the eddy viscosity model, the damping functions are introduced by hand to suppress the 

eddy viscosity in close vicinity of the wall in order to achieve consistency with observations. Then, 

how is the suppression of the near-wall viscosity expected to take place in our DEVM, if any ?

In uniform channel flow, the last term on r.h.s. of (2.7) is proportional to the square of the velocity 

gradient. Since z is likely to be limited as z2< 1, a large velocity gradient at the vicinity of the wall 

will result in a large second derivative of z provided that m0 is positive. In other words, when 

approached toward the wall, z will rapidly decrease and give rise to the near-wall decrease in the 

eddy viscosity. In other words, in the DEVM, the near-wall suppression of the eddy viscosity is 

expected to occur as a direct result of the reaction from the velocity gradient.
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 (2.7) states that the viscosity behaves effectively as a dynamical variable. The spatial and tempo-

ral change of the viscosity will be brought about by circumstantial condition that is posed on the 

fluid. The parameters m0, m1 and/or ϖ therefore must be related to the experimental condition as well 

as the physical property of the fluid. The forms of the relations are guessed to some extent by requir-

ing the scaling property of the standard N-S equation to hold in DEVM, too. Namely, if the length 

and the velocity are measured in units of the characteristic length ℓ and the characteristic velocity V 

of the flow (time is measured by ℓ/V), then the equation involves these scales via. the Reynolds 

number Re = Vℓ/ν. (2.1) and (2.2) of course fulfil this requirement. As regards (2.7), after the res-

caling, the three terms on r.h.s. are accompanied with m0/oR WRe-1, m1ℓ/V and V2/sR W ro/oR WRe-1, respec-

tively. Thus,

 m1\V/ℓ,　s\V2. (2.8)

 It may be instructive to compare (2.7) with an analogous transport equation in, e.g., the k-ε 

model. There, the equation for the dissipation rate ε is expressed as

 2tf+u$Uf=U$
vff
Cnk2

+oT YUfT Y-Cf2f2 kf
2
+ 2

1 Cf1Cnkreik2,  (2.9)

where u is the mean velocity, re  twice the rate-of-strain tensor and f2 the damping function appropri-

ately chosen for numerical tuning. Other quantities are constant. Comparing (2.7) with (2.9), we 

readily notice, for constant k, the correspondences 

 -roUuR W2/2) kreik2 or - k2/f2R WUfR W2, (2.10a)

 z) f.  (2.10b)

Thus, (2.7) formally incorporates the turbulent energy k and the energy dissipation rate ε through the 

gradient of the mean velocity u and the viscosity field z in our dynamical system. This corresponds 

to the role of the Boussinesq’s assumption (Boussinesq 1877) in the eddy viscosity models : the gra-

dient of the mean velocity induces the turbulent stress. This point will be clarified in sec.4 where the 

near-wall properties are elaborated.

It should be noticed that, since z has space-time dependences, the velocity field u in our equation 

system is not identical to the one appearing in the standard N-S equation (2.1) with a constant o.  

Specifically, the solutions to our system, even if they are stationary, generally involve the contribu-

tions from gradient-finite z and can not be the laminar flows described by the standard N-S equa-

tions. On the basis of the reasoning stated above, we interpret such u as the mean velocity in turbu-
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lent flow. This interpretation will be corroborated in what follows by applying the model to the flow 

with boundaries.

3.  Mean viscosity and mean velocity in channel flow

Let us consider a steady parallel flow u= ux zR W, 0, 0R W bounded by two planes z = 0 and 2d in the 

Cartesian coordinate. The system is assumed to be uniform in the x- and y-directions. From the 

equations (2.1) and (2.7), we have

  (3.1)

  (3.2)

where the dimensionless velocity tux/ m0m1R W-1/2ux  has been utilized and the prime stands for a deriv-

ative with respect to the dimensionless coordinate tz/ m0/m1R W-1/2z . It has been assumed that 

c0/- dp/dxR W/t  is constant. The continuity is automatically satisfied. (3.1) is integrated once to 

yield

 ztlu x=C1-atz,  (3.3)

with C1 being an integration constant. Since  at the middle point, C1 is related to the half chan-

nel width d and the parameter a by

 C1=atd/a m0/m1R W-1/2d. (3.4)

Expand tux  and z around tz = 0 as 

 tux= n!
un tzn , z=

n=0
! n!

zn

n=0
! tzn.  (3.5)

No-slip implies u0 = 0. Substitute these to (3.1) and (3.2) to obtain the following relations among 

expansion coefficients that are utilized for setting the boundary conditions at tz = 0 :

 z0u1=C1, z0u2+z1u1=-a, 2z2+z0
2-1=bu12. (3.6)

ux at the viscous sublayer is usually expressed as ux= ux/lxR Wz or

 tux= tux/tl xR Wtz= u1tz.  (3.7)

ux is the wall-friction velocity, and lx the wall-friction length. Let us introduce a constant γ by
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 tl x/ m0/m1R W-1/2lx=cz0.  (3.8)

Then, comparing (3.7) with (3.5) and (3.6), we also have

 tux/ m0m1R W-1/2ux= tl xC1/z0=cC1. (3.9)

From (3.8) and (3.9), if c+O 1R W , m0/m1R W1/2z0  and m0/m1R W1/2C1  provide the measures for lx and ux, 

respectively.

Numerically integrating (3.1) and (3.2) with the condition (3.6) is easy and the results are shown in 

Fig. 1 for α = 0.008, 0.01, 0.0126 and 0.014. For other parameters, see the figure caption. We have 

chosen the values of parameters so as for the equalities  to hold at the same position in tz .

The values of z as functions of z/d shown in Fig. 1 exhibit a following feature. After a negligible 

decrease which is not revealed in the figure, z monotonically grows toward the centre of the chan-

nel. The growths are approximately linear near the wall. As α gets larger, z in the central region 

exhibits larger deviation from unity.

By employing the logarithmic scale for tz , the calculated ux in the vicinity of the wall are shown in 

the right panel of Fig. 1. The overall feature observed in experiments has been reproduced qualita-

tively (Laufer 1951, Wei and Willmarth 1989, Zanoun et al. 2003). In particular, the distinction 

between the regions in which ux grows linearly (z/lx < 2) and almost logarithmically (z/lx > 50), which 

is characterized by the bending of curve in between, is clearly observed. A close look at this figure 

also reveals a tendency that a larger α yields a larger bending of the curve in the transition layer. The 

negativity of z1 in (3.5) seems quite effective to achieve this feature of the velocity distribu-

Fig. 1.  Solutions to (3.2) and (3.4) with m1 > 0 in the region 0 < z ≤ d. β, z0 and z1 are fixed to 1, 0.001 and 
−0.18, respectively. Left panel : z vs. z/d. Right panel : ux/ux vs. z/lx. Solid curve : 
tux,max, td,C1, tuxR W=(0.29, 3.13, 0.025, 0.013) ; dotted curve : (0.28, 2.44, 0.0244, 0.012) ; dashed 

curve : (0.26, 1.74, 0.022, 0.011) ; dash-dotted curve : (0.24, 1.28, 0.018, 0.009).
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tion. Note that no adjustable functions have been utilized to obtain this result.

The calculated velocity in the logarithmic layer shown in Fig. 1 for smaller α behaves as

 tux
tux .

l
1 ln tz/tl xR W+C= 0.41

1 ln tz/tl xR W+2.4  (3.10)

We see that the Kármán constant l. 0.41 and C. 2.4 . These are to be compared with the experi-

mentally obtained values lexp= 0.37+ 0.4  and Cexp= 3.7+ 5 (Zanoun et al. 2003, Dean 1978).

4. Reynolds stress

The Reynolds stress characterizes the turbulence by quantifying the deviation from the mean and is 

governed by the Reynolds equations derived from the standard N-S equation. For the present prob-

lem, it is written as

 u$Uux+du$Udux= oU2ux-2xp/t,  (4.1)

where the bar stands for the ensemble average and δ the deviation from the mean value denoted by 

unbarred field variables. ν is the constant kinematic viscosity. For the uniform turbulence in 

incompressible fluid, (4.1) leads to a relation of the Reynolds stress and the mean flow around the cen-

tre of the channel (Jones and Launder 1972).

 - tux2
dtuzdtux . 1- d

z . (4.2)

We assume that the means in (4.1) and the corresponding ones in (2.1) are the same. By subtract-

ing (2.1) with (2.3) from (4.1), the expression for the Reynolds stress in the DEVM is obtained

 -du$Udux=U$ roz-oR WUux.  (4.3)

Then, integrating (4.3) once and utilizing (3.9), we have

  (4.4)

where, requiring (4.4) to vanish on the wall, we have set 

 ro= o/z0.  (4.5)

In the central region, (4.4) will behave as (4.2). In Fig. 2,  are drawn. As z0 gets 

smaller, this function in the central region approaches a straight line with the slope of ~ −11. This 

feature is entirely consistent with the prediction (4.2) of the scaling theory and the experiments (Kle-

banoff 1954, Zanoun et al. 2003, Jones and Launder 1972). Since the slope of (4.4) as a function of 
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z/d is −1 near z = d, the result shown in Fig. 3 gives a constraint on the Prandtl number

 
m0
o
. 11
c2z0 . (4.6)

The Reynolds number is Re= 2dux,max/o= 2lxux/oR W d/lxR W ux,max/ux" %. The first factor on the 

extreme right is 2m0c2z0C1/o. 22C1 by using (3.8), (3.9) and (4.6). Together with the calculated 

values of C1, d/lx  and ux,max/ux, we have Re. 22$0.025$(3.1/(5×10−4)) (0.29/0.013) . 8000 for 

a = 0.008.

According to the mixing-length theory (Prandtl 1933), the Reynolds stress near the wall is given by

 -duzdux= l22zuxR W2/ o t2zux ,  (4.7)

where l is the mixing length and o t/ l22zux is the eddy viscosity. Comparing (4.7) with (4.4) and 

(3.9), we have

 l22zuxR W2= o/z0R W z-z0R W2zux.  (4.8)

From (4.7) and (4.8), we have the following expression for the mixing length

  (4.9)

In case z1 = 0, using the fact bu1& 1  and eliminating u1 and z2 from (3.6) and (3.7), (4.9) gives the 

linear function for l: l. obC1/m0R W1/2z/ 2z0R W near the wall as is assumed in the mixing-length theory 

(Prandtl 1933). If z1 is negative, we may choose o0 in (4.3) to be the minimum of roz to avoid an 

imaginary l. However, we have seen that z2 is positive and very large as compared to z1  in the 

scaling region, so that l can be regarded as real and linear in z for all practical purposes.

Fig. 2.  Plots of z-z0R W2tztux/C1
2  vs. z/d calculated from z and tux given in Fig. 1. Meanings of curves are 

same as in Fig. 1.
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 From (4.7) and (4.8), we also have

 o t= o z/z0-1R W,  (4.10)

which gives the direct relation of z to the eddy viscosity. Since 2zux  is constant at the vicinity of the 

wall, (4.7) and (4.10) means that the Reynolds stress is the origin of the eddy viscosity and in turn z.  

Therefore, we can say that the DEVM also describes the relation between the mean velocity gradient 

and the Reynolds stress.

5.  Pipe flow

 The flows u = (0, 0, uz(r)) in a circular pipe of the radius R with the central axis at r = 0 are simi-

larly obtained in the cylindrical coordinate (r, θ, z). The equations corresponding to (3.1) and (3.2) 

for channel flow now read

 z tr
12tr tr2trR Wtuz+2trz2trtuz+a= 0, a/ ro

c0
m1
3
m0 ,  (5.1)

 tr
12tr tr2trR Wz- 2

1
z2-1R W- 2

b
2trtuzR W2= 0,  (5.2)

with tr/ m0/m1R W-1/2r and tuz/ m0m1R W-1/2uz. c0 is now for the pressure gradient along the z-direc-

tion. These are solved by subjecting tuz  and z to the expansions in tr as in (3.5). Starting from tr = 0, 

integrations are performed until tuz  vanishes. The point where tuz  vanishes gives the pipe radius 

tR/ m0/m1R W-1/2R . Very abrupt decrease of tuz  at tr = tR occurs and our numerical integration were 

accompanied with the maximum relative errors of the order of 10−2 for tR and z tRR W.
The results are shown in Fig. 3 for z and uz/ux as functions of the distance from the central axis and 

the wall, respectively, for five values of z0/z r= 0R W. A uniform pressure gradient has been 

assumed along z-direction. The pressure gradient parameter α is also varied.

z is almost constant in the central region of the pipe and decreases to a very small value at the 

wall. As in the channel flow, a smaller z gives rise to a larger second derivative of the velocity and 

in turn more rapid decreases of the velocity particularly in the sublayer as is shown in Fig. 3. Conse-

quently, larger deviation of z0 from unity brings about larger bending of the curve of uz in the transi-

tion layer. The Kármán constant decreases as α increases. The conformity with the experiments 

(Laufer 1953, Ferro 2012) is quite well for a = 0.008 and z0= 0.974.
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6. Summary and remarks 

In the DEVM of turbulence, the viscosity field z is an independent degree of freedom. The equa-

tion of motion of z was determined by requiring the potential energy be a minimum. The DEVM 

provides a clear view of action and reaction between the shear and the viscosity. When applied to 

the steady channel and pipe flows, the results of the model calculations agreed fairly well with the 

experiments for the mean velocity over the whole spatial range, if the boundary conditions and the 

model parameters are appropriately chosen. This strongly supports the anticipation that the time-

independent velocity in the DEVM is interpreted as the mean velocity of turbulent flow with large 

Reynolds number.

In addition to the kinematic viscosity, the DEVM involves three model parameters and no adjust-

able functions. The physically interesting flows at the central positions are found around the stable 

point of the potential of z, but near the wall, largely deviate from the stable point. In this way, z 

gives rise to the effect of damping factor (Van Dries 1956) that frequently utilized in prevalent eddy 

viscosity models (Nagano and Tagawa 1990, Suga 1998, Karimpour and Venayagamoorthy 2013, 

Bredberg 2001).

In the channel flow, the bending of the curves exhibiting the transition from the linear to the loga-

rithmic velocity distribution near the wall is brought about mainly by the negativity of z1 or the small-

ness of α (i.e., the smallness of the pressure gradient). The negativity of z1 means that the viscosity 

Fig. 3.  Flow in a pipe. Left panel : z as a function of r/R where r is the radial distance from the central axis 
for various a and z0. The meanings of the curves are designated in the right panel. Right 
panel : Mean velocity in pipe flow for some parameter values of a and z0. r+/ R-rR W/lx. z0 

= 0.04.　 tR, tumaxR W== (8.6, 0.53) for ed solid curve ; (7.8, 0.5) for blue dotted curve ; (7, 0.46) for green 
dashed curve ; (6.2, 0.014) for purple dot-dashed curve ; (5.7, 0.37) for black solid curve. Squares 
are taken from Laufer (1953).
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field first decreases with the distance from the wall. At present, what this physically means is not 

clear. Following the mixing-length theory of turbulence near the wall (Prandtl 1933), the field ϕ is 

envisaged to express the variation of the viscosity due to generation of eddies with various 

scales. The negativity and the smallness of z1 may then mean that in the layer just above the wall the 

distribution of eddies is stationary. Eddies are accompanied with heat (Fulton 1950, Rott 1959, 

Mayer and Powell 1992, Bershader 1995, Polihronov and Straatman 2015 2012). However, the gen-

erated heat alone is unable to give rise to the viscosity change of order 103 over the fluid.

The equations of motion in our DEVM were derived by requiring δL defined in sec.2 to van-

ish. Unfortunately, δL is not a total derivative, so that this procedure does not constitute the standard 

least action principle. This is an expected situation because we have adopted the Eulerian descrip-

tion of fluid. One thus might be dubious if the action-reaction relation between the velocity and the 

viscosity was correctly implemented in the model. Interestingly, it is possible to construct an Eule-

rian ‘action’ whose minimization yields equations of motion very similar to those we have discussed 

in this paper. Our DEVM will be validated in this respect. This feature of our modelling will be 

reported in a separate paper.

The DEVM can be said promising as long as the steady mean flow of turbulence is concerned, 

although wide portion in the parameter space is left unexplored. The variants of the form of interac-

tion between the velocity gradient and the viscosity field together with the form of Q zR W are to be 

explored. The crucial point is that the local Eulerian field theory is in fact possible. In this paper, 

only steady flows were considered. In order for the solutions to be of the really steady, well-devel-

oped turbulence, the mean flow must be stable. Investigating the stability of the solution is important 

and is left for future study.
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