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Abstract : The previous perturbative method to investigate the stability of vortex is extended so 
as to incorporate gravity in a uniformly rotating frame.  The viscosity expansion method is 
employed, in which the radial and the z-components of the velocity field are proportional to vis-
cosity and are therefore infinitesimally small, while the azimuthal component is independent of 
the viscosity.  The rotation of the frame is incorporated by the Coriolis force.  The algebraic 
eigenfrequency equation (EFE) of the sixth order is derived.  There exist three physical eigen-
frequencies that are generally coordinate dependent.  The perturbations are found to be possible 
for the azimuthal wavenumber being equal to or greater than two.  Since the real parts of the 
eigenfrequencies are dominantly positive and decreasing functions of the radial coordinate, the 
patterns of perturbations mainly form trailing spirals.  Amplitudes of perturbations are also cal-
culated.  Their phases are shifted by the gravity. 

1.  Introduction

Vortices of macroscopic scales can be observed everywhere where viscous fluid exists.  Whirl-

wind, tornado, typhoon (or cyclone) and eddying tide are the examples.  Interacting with other vorti-

ces or with the environments, vortices evolve, stay steady and decay, thereby exhibiting generally 

quite complicated temporal behaviour. 

From the meteorological point of view, typhoon, for example, is a very complex swirl of atmo-

sphere that requires, together with input data, large amount of numerical calculations based on physi-

cal principles for describing and understanding its structure and behaviour.  Although atmosphere is 

a fluid whose dynamics must be described in terms of a differential equation called the Navier-Stokes 

(N-S) equation, the evolution of typhoon is believed to be mainly derived by formation of cumuli 

resulting from the first order phase transition that is discontinuous in time and inaccessible to by the 

differential equations (Ooyama 1966).  The interactions of typhoon with other numerous components 

of geophysical elements are also the cause of difficulty in analyzing and predicting the capricious phe-

nomena.  For a practical purpose of weather-forecasting, therefore, it is inevitable to rely not only on 
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statistical method but also to models parametrized for wind, pressure and so on (Holland 1980 ; Wil-

loughby and Rahn 2004 ; Willoughby et al. 2005).  Phenomenological modelings of this kind make 

it possible to construct numerically detailed view of evolving typhoons. 

Nevertheless, we also know that the time-independent simple vortex model of typhoon is success-

ful to capture such very fundamental characteristics of matured typhoon as the direction of swirling, 

the wind speed distribution, the eye formation, the correlation of the wind speed and the size of the 

eye and the existence of the warm core (Takahashi 2015a).  Here, (frequently axisymmetric) solu-

tions to the N-S equation that are transformed to a set of ordinary differential equations are referred to 

as simple vortices.  The simple vortices are formed by laminar flow and are free from complexity 

due to turbulences.  Irrespective of such over-simplification, they can be handy models of typhoons 

in large scales.   

The dynamical evolution of a vortex is governed initially by its instability.  Studies on this point 

exploiting numerical calculation method have required several simplifications because of the intrinsic 

complexity of atmospheric dynamics.  Eady (1949) treated adiabatic perturbations on uniform flows 

in a rotating frame to study the vertical structure of the flow.  Walko and Gall (1984) numerically 

studied the stability of two-dimensional vortices and found both of stable and unstable modes.  Smith 

and Rosenbluth (1990) gave an exact solution of perturbation for n = 1 mode and showed that it is not 

exponentially but algebraically unstable.  Nolan and Montgomery (2002) adopted a phenomenologi-

cal background flow of incompressible fluid with low Reynolds numbers to model a 

typhoon.  McWilliams et al. (2003) incorporated the Coriolis force for the inviscid vortices and cal-

culated the eigenfrequency by taking account of the azimuthally averaged higher order perturba-

tions.  All works indicate that the steady and axisymmetric vortex is essentially unstable.  However, 

analytic relations between eigenfrequencies of perturbations and the resultant unstable motions have 

yet been obtained for realistic three dimensional vortices.

Fortunately, some simple vortices have been known to exist as the exact solutions to the N-S equa-

tion.  The simplest ones among the simple vortices are the steady and axially symmetric vortices 

with no boundaries constructed by Burgers (1948), Sullivan (1959) and Takahashi (2014).  Taka-

hashi’s solutions are classified to three types in accordance with the number of cells and play the role 

of the missing links in the sense that, by changing one of the parameters, metamorphoses take place 

from one types to another by connecting the Burgers’ and Sullivan’s vortices.  Incorporation of 

boundaries is straightforward (Takahashi 2015a).

One may wonder how the simple vortices can be a model of typhoon if we recall that the real 
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typhoons are maintained by means of heat supply triggered by the conditional instability on air with 

moisture (Charney and Eliassen 1963 ; Ooyama 1966).  Interestingly enough, the maintenance by 

heat has already been implicitly assumed in the simple vortices (Rott 1959 ; Takahashi 2015a, 

2016).  Furthermore, under appropriate boundary conditions, the temperature distribution within 

simple vortex has been shown to be quite similar to the ones observed in real typhoon (Takahashi 

2015a, 2016).  Exploiting simple vortices for understanding typhoon thus seems plausible.  Of 

course, generation of heat from moisture and ensuing precipitation are essential ingredients of 

typhoon, as is supported partly by observations that typhoons frequently weaken after landing.  How-

ever, elaborating their mechanism is another issue. 

The linear perturbation on a simple vortex will be treated in more transparent way than the tradi-

tional numerical method (Takahashi 2013).  In fact, the coordinate dependent eigenfrequencies sat-

isfy a fourth-order algebraic equation, once the axisymmetric background velocity field was 

given.  All of the four solutions do not diverge at infinity and can bear physical meanings, among 

which an unstable mode always exists. 

Thus, one may address a question of whether the stability analysis of simple vortices can clarify the 

nature of unstable modes through mathematically tractable solutions of the eigenvalue problem in 

more general circumstances than the ones considered in Takahashi (2013).  If the answer is affirma-

tive, then it may help gain an insight into understanding the matured or evolving typhoon.  External 

or internal disturbances like geographical irregularities or gas-liquid phase transition will serve as the 

seeds of perturbations (Charney and Eliassen 1963 ; Ooyama 1966), although we do not argue here 

the problems associated to these factors.   

In this paper, the perturbative model employed by Takahashi (2013) is extended so as to incorporate 

gravity in a uniformly rotating frame that produces the Coriolis force.  Gravity and frame rotation are 

ubiquitous conditions that are imposed on large scale swirling of fluid on heavenly bodies (Takahashi 

2015b, 2015c, 2016 and references cited therein).  Taking advantage of the Cheshire cat effect that 

the effect of viscosity is preserved after the zero limit of viscosity (Takahashi 2015a), the radial and 

the z-components of the velocity field are treated to be proportional to viscosity ν and are therefore 

infinitesimally small, while the azimuthal component is independent of ν. 

This paper is organized as follows.  In the next section, the EFE is derived for the rotating system 

under a uniform gravity.  In sec. 3, the EFE is solved and the conditions for physical eigenfrequen-

cies are sought analytically.  In sec. 4, the EFE is numerically solved for some lower modes and for 

small Coriolis parameters.  In sec. 5, large Coriolis parameters are taken into account in solving the 
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EFE with finite gravity.  In sec. 6, the relative amplitudes of stable and unstable modes are numeri-

cally found.  A summary is presented in sec. 7.  Derivation of the EFE is elaborated in the appendix. 

2.  Linear perturbation and the EFE

The gravity is assumed to be uniform and acts along the z-direction in the cylindrical coordinate 

system (r, θ, z).  The perturbations around a steady and axisymmetric background flow (vr=vz=0, 

vθ>0) with a uniform density ρ under the presence of gravity g and the frame rotation obey in cylin-

drical coordinate the following equations 

  2t+ r
vi2iS Xdvr- r

2vidvi = fdvi- t
12rdp+ r

vi2 +fvi+ 2
f2rT Y

t
dt ,   (2.1)

  2t+ r
vi2iS Xdvi+2rvi+ r

viS Xdvr=-fdvr- tr1 2idp,   (2.2)

  2t+ r
vi2iS Xdvz=- t12zdp-g t

dt ,   (2.3)

  2t+ r
vi2iS Xdt+t r

1
dvr+2rdvrS X+ r

t
2idvi+t2zdvz= 0.    (2.4)

The perturbations are denoted by the symbol δ.  f is the Coriolis parameter.  (2.4) is the continuity 

equation.  The meanings of the other symbols may be obvious.  In the above equations, the deriva-

tives of the background velocity fields, the density and the pressure with respect to θ have been 

dropped.  Such axisymmetric velocity fields are constructed by the ν-expansion method, which is 

reviewed in Appendix.

As usual, we assume that the components of the perturbations have a ‘Fourier factor’ and write

  dvr=R exp i ni+kz-~tR W" %,   (2.5a)

  dvi=H exp i ni+kz-~tR W" %,  (2.5b)

  dvz=Z exp i ni+kz-~tR W" %,   (2.5c)

  dp=tP exp i ni+kz-~tR W" %,  (2.5d)

  dt=tD exp i ni+kz-~tR W" %,   (2.5e)

where n is an integer.  (The definitions of amplitudes are changed from those in Takahashi 2013.) 

Now, we assume that the angular velocity ω and the amplitudes are r-dependent.  Substituting (2.5) 

to (2.1) ~ (2.4), we have 

  i -~+nXR WR-2XH= fH- lP -i l~ tPR W+rX2pD,   (2.6)
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  i -~+XnR WH+ r lX +2XR WR=-fR- r
in P,   (2.7)

  2iZ+i -~+XnR WZ=-ikP-gD,   (2.8)

  2iD+i -~+nXR WD= r
1 R+ lR -i l~ tRS X+ r

in
H+ikZ= 0,   (2.9)

where X/ vi/r  and p= 1+f/X+f2/2X2.  The prime stands for a derivative by r.  We assume that 

X continuously approaches zero for r"3 .  In the above, D and Z are exceptionally assumed to be 

t-dependent in order to cancel the terms linear in t in (2.6) and (2.9).  In order for such cancellations 

to occur, D and Z must be linear in t, too :  

  D=D 0R W+D 1R Wt,   (2.10a)

  Z=Z 0R W+Z 1R Wt.  (2.10b)

Collecting the terms linear in t, we have

  i l~ P+rX2pD 1R W= 0,  (2.11a)

  u~iZ 1R W= gD 1R W,  (2.11b)

  D 1R W=- u~
l~ R+ u~

k Z 1R W,  (2.11c)

where u~/~-nX .  From these equations, P, D(1) and Z(1) are solved in terms of R :

  iZ 1R W=- u~2ikg
g l~ R,  (2.12a)

  D 1R W=- u~2+ikg
l~ u~ R,  (2.12b)

  iP= rX2p u~2+ikg
u~ R.  (2.12c)

Similarly, the t0 terms yield

  -i u~R- 2X+fR WH=- lP +rX2pD 0R W,   (2.13a)

  u~iH- r lX +2X+fR WR= r
n iP,   (2.13b)

  u~Z 0R W=-iZ 1R W+kP-giD 0R W,  (2.13c)

  D 1R W-i u~D 0R W+ r
1 R+ lR + r

n iH+ikZ 0R W= 0.  (2.13d)

For seven unknown amplitudes, we have two differential equations (2.13a) and (2.13d), or

  lP = i u~R+ 2X+fR WH+rX2pD 0R W,  (2.14a)
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  lR =- r
1 R-D 1R W+i u~D 0R W- r

n iH-ikZ 0R W,  (2.14b)

with five constraints, i.e., (2.12) and

  iH= u~
r lX +2X+f

+ u~2+ikg
nX2pU ZR,  (2.15a)

  Z 0R W= u~
1

u~2+ikg
g l~ -ikrX2p u~

R-giD 0R W# &,  (2.15b)

obtained from (2.13b) and (2.13c), respectively.  Note that u~ and u~2+igk have been assumed to be 

non-zero.  (It is easy to see that neither u~= 0  nor u~2+igk= 0 yields physically meaningful solu-

tions.) The solutions exist for particular eigenfrequencies.  We proceed the way similar to the one 

expounded in Takahashi (2013). 

First, differentiate (2.12c) by r :

  i lP = u~2+ikg
rX2p u~

lR + u~2+ikg
rX2p u~U ZlR.  (2.16)

Substitute (2.14b) to (2.16) to eliminate lR

  i lP = r u~2+ikg
X2p u~U ZlR+ u~2+ikg

rX2p u~
-D 1R W+ u~iD 0R W- r

n iH-ikZ 0R WS X.   (2.17)

lP  is eliminated from (2.14a) and (2.17) to obtain

u~+r u~2+ikg
X2p u~U Zl# &R- u~2+ikg

rX2p u~
+2X+fU ZiH- u~2+ikg

rX2p
-kgD 0R W+ u~D 1R W+ik u~Z 0R WR W= 0.

  (2.18)

Θ, D(0), D(1) and Z(0) in (2.18) are eliminated with helps of (2.12b), (2.15a) and (2.15b) to obtain the 

equation involving R only :

u~+r u~2+ikg
X2p u~U Zl# &R- u~2+ikg

rX2p u~
+2X+fU Z

u~2+ikg
nX2p

+ u~
r lX +2X+fU ZR

-
u~2+ikgR W2
rX2p

- u~2 l~ +ikg u~+k2rX2p u~R WR= 0.

Then, recalling ~= u~+nX  and requiring R to be nonzero lead to the following equation :  

 

u~- u~2+ikg
nr lX X2p

+
u~2+ikgR W2

2nr lX X2p u~2

+ u~2+igk
r X2pR Wlu~

　　　- u~2+igk
nX2p u~

+2X+fU Z
u~2+igk
nX2p

+ u~
r lX +2X+fU Z

u~2+ikgR W2
krX2pR W2 u~

= 0.

  (2.19)
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Note that l~  has also been entirely eliminated from (2.19).  Multiplying u~ u~+igkR W2  to both sides 

of (2.19) and rearranging the terms, we have

 

u~6+ 2igk- 2X+fR W r lX +2X+fR WR W u~4-2nX2p 2X+fR W u~3

　　- n2+k2r2R W X2pR W2+2igk 2X+fR W r lX +2X+fR W+g2k2R W u~2

　　　　-2ingkX2p r lX +2X+fR W u~+g2k2 2X+fR W r lX +2X+fR W= 0.

  (2.20a)

This expression is simplified by noting that 

X= vi/r= ui/r-f/2/X0-f/2

as

 

u~6+ 2igk-2X0 rX0
l　+2X0R WR W u~4-4n X0

2+f2/4R WX0 u~3

　　- n2+k2r2R W X0
2+f2/4R W2+4igkX0 rX0

l　+2X0R W+g2k2R W u~2

　　　　-2ingk X0
2+f2/4R W rX0

l　+2X0R W u~+2g2k2X0 rX0
l　+2X0R W= 0.

  (2.20b)

This is the exact result within the linear theory of inviscid fluid.  We have started with the equations 

involving l~ .  However, l~  has finally disappeared, which renders the EFE (2.20) a pure algebraic 

equation.  This is contrasted with that of McWilliams et al. (2003) where azimuthally averaged per-

turbations were considered and a differential equation for ω was derived.  Fritts and Alexander (2003) 

studied the effects of gravity and Coriolis force within linear perturbation and found the fourth-order 

algebraic equation for the eigenfrequency.  Their analysis relied on the WKB approximation (rapid 

oscillations of the phase and slow variations of the amplitudes) and thereby casts a doubt on the valid-

ity region.

The Coriolis parameter f appears in (2.20) with its quadratic powers.  When f is far smaller than X, 

therefore, neglecting f in (2.20) will be a good approximation for finding u~.  In this case, the effect of 

the Coriolis force emerges in the background flow via. vi= ui-fr/2, where uθ is the well-known vor-

tex flow in a static frame of reference.  See Appendix for details. 

3.  Finding physical eigenfrequencies

The EFE (2.20) is a sixth order algebraic equation and generally has six roots, whose precise ana-

lytical properties are hardly known.  However, some limiting cases are rather tractable.  Below, we 

shall take a look at them before performing numerical calculations.
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3.1  n=0

In this case, (2.20) is rewritten as

  u~2+igkR W2 u~2-2X0 rX0
l　+2X0R WR W= kr X0

2+f2/4R WR W2 u~2.   (3.1)

Let us remember that X0~ constant +r2 near r=0 and ~r-2 at infinity.  Then, if f=0, the r.h.s. may 

be neglected in the whole region of r because the r.h.s. behaves as r2 near r=0 and r-6 at infin-

ity.  Thus, we have four approximate roots

  ~=! -igk ,! 2X0 rX0
l　+2X0R W , f= 0R W.   (3.2)

The last two solutions rapidly vanish at infinity because rX0
l　+2X0" r-4 for r"3 . 

Next consider the case f! 0 Near r = 0, neglecting the r.h.s., we have 

  u~=! -igk ,!2X0, r. 0R W.  (3.3)

As a matter of course, the effect of the frame rotation has disappeared.  At long distances, 

2X0 rX0
l　+2X0R W is again neglected but f2/4 on the r.h.s. must be retained.  Then, we have

  ~= 0,! -igk! f2/4R Wkr , r"3R W.  (3.4)

3.2  n$1

We consider the two limiting cases, i.e., r=0 and r"3 .

i)  r=0

k2r2and rX0
l　 vanish.  The remaining equation is factorizable and reduces to

  u~ 0R W3!2X0 0R W u~ 0R W2+ igk!n X0 0R W2+f2/4R WR W u~ 0R W!2igkX0 0R W= 0.  (3.5)

The exact roots will be found by Cardano’s formula.  For igk & n X0 0R W2+f2/4R W , the roots are 

given by (3.3).  Under the opposite condition, namely igk % n X0 0R W2+f2/4R W , solutions are given 

by 

  u~ 0R W=
"2igkX0 0R W/ igk!n X0 0R W2+f2/4R WF I,
"X0 0R W+ -igk+ 1"nR WX0 0R W2-nf2/4 ,
"X0 0R W- -igk+ 1"nR WX0 0R W2-nf2/4 .
G   (3.6)

The order of the double signs in (3.6) corresponds to the one in (3.5).  Sufficiently large X0 0R Wor f 

give rise to, irrespective of k, an imaginary part in ω(0). 
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ii)  r"3

Noting that X0, rX0
l　" 0 , we may retain the highest order term and k2r2 term to have

  u~6+2igk u~4-g2k2 u~2= 0, f= 0.  (3.7a)

  u~6+ f/2R W4k2r2 u~2= 0, f! 0.  (3.7b)

The roots are 

  ~ r"3R W= nX0,! -igk, f= 0,

nX0,! f/2R W !kr f! 0.
G   (3.8)

The first one for each of two cases is the double roots.  Note that (3.8) is independent of n and that, 

when f ! 0, the effect of the gravity has disappeared.

Are the six roots all physically meaningful ?  The answer to this question is found by constructing 

the amplitude equation and by scrutinizing it. 

The amplitudes of the perturbations are determined by the equations presented in sec. 2.  Let us 

consider R , the amplitude of dvr.  One can eliminate D(1), Q, Z(0) from (2.14b) with references to 

(2.12b), (2.15a) and (2.15b) together with the definition X=X0-f/2 to obtain

  R
lR = r

1 + u~ u~2+igk
l~ u~2-igk

- r
n

u~
rX0
l　+2X0

- u~2+igk
X0

2+f2/4
r
n2 +k2rS X+i u~+ u~

igkT Y
R
D 0R W

.  (3.9)

Using ω determined by the method described above, the amplitude R is calculated from (3.9) once D(0) 

together with an appropriate boundary condition is posed. 

Let us first consider the case n = 0.  The first term on the r.h.s. of (3.9) gives rise in R to a term 

proportional to 1/r.  The divergence of R at r = 0 would cause a physical difficulty and should be 

deleted.  The second and fourth terms are the ones employable for such a cancellation if the first two 

solutions in (3.2) are adopted.  In fact, if the expression

  ~=! -igk+c2r2+gR W  (3.10)

near r = 0 is employed, we have

u~ u~2+igk
l~ u~2-igk

.
-igk
2c2r

2 -igk c2r2
-2igk

= r
2 ,

u~2+igk
X0 0R W2+f2/4 k2r.

2 -igk c2r2
X0 0R W2+f2/4 k2r=-k2

2 -igk c2r
X0 0R W2+f2/4 .

Thus, collecting the most singular terms in (3.9), we have
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R
lR = r

d-1
0R W
+g,   (3.11a)

  d-1
0R W= 1-

2 -igk c2
k 2e2id

X0 0R W2+ 4
f2T Y.  (3.11b)

The phases of -igk  and c2 will be correlated but, at present, we do not know how they are related. (c2 

is determined by using (2.20), which is a cumbersome task.)  At least, one can say that the real part 

of the coefficient of 1/r can be greater than -1 by appropriately choosing | k | and δ to delete the sin-

gularity in R.  The above argument reveals that this is possible only when ~ 0R W=! -igk .   This 

condition enables us to choose the physical branches from the six roots of (2.20) in case n = 

0.  However, we have already seen that the solutions 

  ~=! -igk , n= 0R W.  (3.12)

in (3.3), which satisfy the above condition, will be a good approximation in the whole region of r.  Of 

course, in determining the amplitudes, higher order terms in (3.10) must be incorporated.

The above consideration also applies to the cases of n$1 : The correct branches are such that the 

solution of (3.9) does not diverge at r = 0.  Provided that neither u~ 0R W nor u~ 0R W2+igk  vanish, by 

collecting the r-1 terms and making use of (3.5), we find the coefficient of 1/r to be

 

d-1
nR W=-1-

u~ 0R W
2nX0 0R W

-
u~ 0R W2+igk

n2 X0 0R W2+f2/4R W

=-1-
u~ 0R W u~ 0R W2+igkR W

2nX0 0R W u~ 0R W2+n2 X0 0R W2+f2/4R W u~ 0R W+2ingkX0 0R W

=-1!n.

  (3.13)

The order of the signs is same as the one in (3.5).  R is the perturbation amplitude for vr that, owing 

to physical reason, must vanish at r = 0, or d-1
nR W> 0 .  From (3.13), this is possible when n$2 (#-2) 

for the upper (lower) signs in (3.5).  Consequently, the number of the spiral arms formed by internal 

perturbations is equal to or larger than two. 

If u~ 0R W2+igk  vanished, 1/r2 singularity would occur.  However, numerical calculations show that 

this situation may be impossible. 

The D(0) term is not determined within the N-S equations but gives the initial condition for the den-

sity perturbation.  For instance, we may set D(0)=0, i.e., the density perturbation does not initially 

exist. 
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4.  Numerical calculations of eigenfrequencies

The eigenfrequencies for n=0 have been obtained as (3.12).  Here we restrict ourselves to the 

cases of n$1.

(2.19) generally has six complex roots specified by n and k.  This equation is invariant for n"-n , 

u~"- u~  (or ~"-~ ), so that it is sufficient to restrict n to positive integers. 

The effect of f will emerge when f $X0, i.e., at long radial distances.  As was mentioned above, 

for practical purposes of studying phenomena on the earth, f may be safely neglected in determining 

ω.  The case of large f will be argued later.

We have seen that u~ 0R W! 0.  More precisely, near the rotation axis, u~ rR W. u~ 0R W+ u~2r2 since X0 

is an even function of r. 

The global properties of the solutions will be clarified by numerical calculations.  For this purpose, 

we rewrite (2.20) in terms of new dimensionless functions and a variable u~ xR W/ u~/ g k , 
tX xR W/X/ g k = vi/ g k rR W and x/ k r  as

t~6+ 2ieid-2 tX0 x tX0
l　+2 tX0R WR W t~4-4n tX0

3 t~3- n2+e2idx2R W tX0
4+4ieid x tX tlX +2 tX2R W+e2idR W t~2

-2ineid tX0
2 x tX0

l　+2 tX0R W t~+2e2id tX0 x tX0
l　+2 tX0R W= 0,

� (4.1)

where δ is the phase of k.  The prime on tX0 stands for the derivative with respect to x. 

Concerning the velocity field uθ of the background flow, Takahashi (2014) showed that there exist 

three types of solutions, i.e., Type I, Type II and Type III, that are characterized by the number of cells 

(Sullivan 1959) and are mutually connected by continuous changes of parameters.  In Fig. 1, three 

typical azimuthal velocities, labelled by I, II and III, are shown.  uθI is the Burgers solution (Burgers 

1948) 

  X I= 2rr2
C 1-e-q2r2R W,  (4.2)

where Γ is the circulation at infinite distance.  The angular velocities for other types asymptotically 

behave as (4.2) in case the circulation at infinity is the same. 

We shall find the roots of (4.1) with the functional form (4.2) for X0 parameterized so as for uθ to 

have the peak velocity 40 m • s-1 at r = 30 km.  Other parameter values are g = 9.8 m • s-2 and

  k=-i/10 km-1, d=-r/2R W   (4.3)
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The above values give g k = 0.0313s-1.  Following Fritts and Alexander (2003), we have chosen 

Imk to be negative so as for the perturbations to be amplified with altitude.

Among the six roots of (4.1), we select the ones that are the roots of the equation (3.5) with the 

upper signs.  The results are shown in Fig. 2 for n = 1, 2 and 3. 

There exist three branches – one is real and two are complex.  The complex ones are mutually 

complex conjugate, so that the Reω for complex modes are degenerated and two curves for each n are 

drawn in the figure.  The imaginary parts of the complex branches are constant and take the values of 

Imω=!0.990 s−1. 

Other features are summarized below.

i) � n=1 : Reω of the complex modes and the neutral mode are almost symmetric about 

Reω=0.  Namely, the complex modes propagate to the positive azimuthal direction (i.e., anti-

clockwise), while the neutral mode to the opposite.  The propagation speed decays with x, which 

means that the perturbations form trailing spirals.  The decay or growth time of the complex 

modes are far shorter than the oscillation period. 

ii) � n=2 : Reω of the neutral mode is zero and no propagations occur.  Reω of the stable and unsta-

ble modes are positive and the perturbations propagate anticlockwise.  At long distances they 

damp and vanish, so that the complex perturbations form trailing spirals.

iii) � n=3 : All three Reω exhibit similar properties to the ones for the complex n=2 modes.

In all cases mentioned above, the perturbations of the complex modes propagate faster than the neutral 

mode.  In addition, we note that |Imω| is two order of magnitude larger than |Reω|.  The growth 

velocity of the unstable perturbation is far faster than the oscillation rate. 

  The features of Reω markedly change when k has a real part.  Examples for Rek = 0.02 km−1 

(δ=−1.3734) are shown in Fig. 3. 

The degeneracies of Reω of complex modes are resolved.  Reω is positive (negative) for stable 

(unstable) modes.  This means that the perturbations of stable (unstable) mode azimuthally propagate 

anticlockwise (clockwise).  Reω as functions of x become smoother with increase of δ.  Although 

not shown here, this tendency gets more noticeable as the gravity and/or the vortex becomes stron-

ger.  In the cases shown in Fig. 3, Reω are almost constant.  This means that the perturbations with 

nonvanishing Reω form a bar.

The constancy of ω is just the assumption commonly made in the WKB approximation.  Based on 
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the observation presented above, we might conclude that the WKB approximation with this assump-

tion is valid under the condition that the gravity is not too weak or the vortex is not too strong.  The 

assumption of radially rapid oscillation of the phase is another ingredient of the WKB approxima-

tion.  Whether this is really taking place is the matter remaining to be explored. 

Each Reω rapidly approaches really a constant value beyond x.5, which corresponds to r.50 

km.  We note that, beyond this value of r, uθI behaves as 1/r, or rX0
l　~X0. 0.  Then, the asymptotic 

form (3.8) will apply.  Therefore, altering the background flow is expected to bring about change of 

the features of ω we have seen so far. 

In order to see the effect of changing the functional form of X by adopting different types of vortex, 

the solutions to (2.20) with X rR W=X III rR W/ uiIII rR W/r  with max(uθIII) = 40 m • s-1 were sought.  The 

results for n = 1, 2 and 3 are shown in Fig. 4.  In all cases, the maxima of Reω are two order of mag-

nitude greater than those shown in Fig. 2.  This tendency remains true even when the original uθIII in 

Fig. 1 is adopted.  Thus, we conclude that the unstable perturbation of Type III vortices grows far 

faster than those of Type I vortices. 

We also notice that the graphical patterns of Reω of the stable modes mimic the background veloc-

ity fields.

5.  Case of f !0

The Coriolis parameter f is defined by 4πsinϕ/p, where p is the period of the rotation and ϕ the lati-

tude.  If f is nonzero, we have to deal with the whole of (2.20).  By adopting the same normalization 

as the previous subsection, it is rewritten as

 

t~6+ 2ieid-2 tX0 x tX0
l　+2 tX0R WR W t~4-4n tX0

2+tf2/4R W tX0 t~3

　　- n2+e2idx2R W tX0
2+tf2/4R W2+4ieid tX0 x tX0

l　+2 tX0R W+e2idS X t~2

　　　　　-2ineid tX0
2+tf2/4R W x tX0

l　+2 tX0R W t~+2e2id tX0 x tX0
l　+2 tX0R W= 0,

  (5.1)

where tf/ f/ g kR W1/2.  Obviously, the feature of the solutions is governed by the relative magnitudes 

of 1, tX and tf .  The analysis presented in the previous subsection applies to the case tf% 1, tX . 

tf  is the ratio of the Coriolis parameter to the period of pendulum with the length equal to the thick-

ness of the fluid.  The typical values of tf  in the atmosphere of some heavenly bodies are given in 

Table 1. 
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Fig. 1 � Azimuthal flow velocity for three types of vortex solutions that have a common circulation at infin-
ity.  The curves labelled as I and II are the Burgers’ (1948) and Sullivan’s (1959) solutions and belong 
to Type I and II, respectively.  The units of the distance and velocity are such that velocity labelled by I 
has a maximum 40 m • s-2 at r=30 km.  The curve labelled as III is an example of Type III solutions 
that were found by Takahashi (2014).  These azimuthal velocities are used as uθ in the text to calculate 
the eigenfrequencies.

Fig. 2 � Reω (in unit of s-1) vs. x for n = 1(red), 2 (blue), 3 (green).  Each curve is labelled by the azimuthal 
wave number together with ‘c’ which denotes complex modes.  Complex modes consist of a stable 
(i.e., negative imaginary part) and an unstable (i.e., positive imaginary part) modes.  For complex 
modes, Imω=!0.990 s-1.  Parameters have been taken as f = 0 s-1, | k | = 0.1 km-1, δ =-π/2 (i.e., 
Rek = 0).  The velocity field I (Burgers vortex) in Fig. 1 has been employed.
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Fig. 3 � Reω (in unit of s-1) of modes n=1 (red), 2 (blue), 3 (green) for k=0.02-0.1i km-1 (δ =-1.3734), 
f=0 and are labelled by the azimuthal wave number.  Complex and neutral branches are labelled by 
‘stable’ or ‘unstable’ and ‘neutral’, respectively.  Imω is 0.995 (-0.995) for Reω 1 (2) 0.  The 
velocity field I in Fig. 1 has been employed.

Fig. 4 � Reω (in unit of s-1) of mode n=1 (red curves), 2 (blue curves) and 3 (green curves) when the velocity 
field III in Fig. 1 with the same maximum velocity as uθI has been employed.  For each n, three curves 
are drawn, among of which the one with the largest (smallest) maximum is of the stable (unstable) 
mode.  The neutral mode lies in between.  Parameters are k =-0.1i km-1 (δ=-π/2), f =0. 
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Fig.6. � Imaginary part vs. real part for unstable Z(1) (red solid curve), Z(0) (blue dotted curve), iP (green broken 
curve) and D(1) (purple dot-dashed curve).  Normalization is max(| ReR |)=10.  The curves for Z(0) 
and D(1) are completely overlapped on each other.  The point on each curve moves clockwise from the 
origin to the origin along with the increase of x from 0 to infinity.  iP has been multiplied by 
100.  Parameters are same as in Fig. 2.

Fig. 5 � Upper panels :  ReR (left) and ImR (right) and lower panels :  ReiΘ (left) and ImiΘ (right) for n=2, 
D(0)=0 obtained by solving (3.9).  Three curves are the solutions for ω’s of neutral (solid curves), sta-
ble (dotted curves) and unstable (broken curves) modes are employed.  iΘ for stable and unstable 
modes have been multiplied by 103.  Normalizations to ReR are arbitrary, while, in other three panels, 
the ratios to max(Re | R |) are plotted.  Parameters are given in the caption of Fig. 2.
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tf% 1 in all cases in Table 1.  Furthermore, in the examples exploited in the previous sections, 

tf% tX 0R W .  Therefore, the Coriolis force is safely neglected for practical purposes.  Exceptions 

are the long distance phenomena where the x2 term in (5.1) gets significant or the case of very rapid 

rotation whose tf  is very large.  The former case gives the second expression for ω in (3.8).  In the 

followings, we examine the latter (maybe fictitious) case.  (However, remember that, even for mod-

erate f, tf  can be large for very small k.) 

In order to see the large Coriolis effects, we here totally neglect the background velocity in 

(5.1).  For simplicity, we restrict ourselves to the case d=-r/2.  The roots of (5.1) are easily found 

as below.

1]  0#x1n

i.  If ntf2/4> 1, we divide the region into 0#x1xc and xc#x1n, where xc/ n2- 2/tfR W4.  Then, 

except for t~= 0,

t~=
! tf/2R W2 n2-x2-1 ,!i tf/2R W2 n2-x2+1 , 0# x< xc ,

　　　　　!i 1! tf/2R W2 n2-x2 , xc# x< n.
G

At x=0, we have five possible values : 0, ! tf/2R W2n-1, !i tf/2R W2n+1.  On the other hand, the 

physical solutions must satisfy (3.6).  In the present case, it reads t~ 0R W= 0, !i tf/2R W2n+1.   

Therefore we adopt the last four roots in the above expressions, or

  t~=
!i tf/2R W2 n2-x2+1 , 0# x1 xc ,

!i 1! tf/2R W2 n2-x2 , xc# x1 n.
G   (5.2)

ii.  If ii. If ntf 2-4# 1, 

  t~=!i 1! tf/2R W2 n2-x2 .  (5.3)

Table 1 � Radius R, rotation period pr, rf , g, thickness of atmosphere h, characteristic gravity fre-
quency fg= g kR W1/2 and tf  of various heavenly bodies.  Here, rf  is defined by 2r/pr, 
tf  by rf /fg= g kR W1/2 and k by 1/h.

heavenly body R (km) pr
rf (s-1) g (m • s-2) h (km) fg (s-1) tf

Venus
Earth
Mars
Sun

neutron star

6.1#103

6.4#103

3.4#103

7#105

20

243 d
24 h

24.5 h
25.4 d

1 s

3.0#10−7

7.3#10−5

7.1#10−5

2.9#10−6

6.3

8.7
9.8
3.8
270

3.2#1011

100
10
30

1,000
10−4

9.3#10−3

3.1#10−2

9.3#10−3

1.2#10−2

1.8#10−6

3.2#10−5

2.3#10−3

6.3#10−3

1.8#10−4

3.5#10−6
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2] 2] n# x

  t~=! 1+ tf/2R W4 x2-n2R WS X1/4e!i{/2 , {=r-tan-1 tf/2R W2 x2-n2S X.  (5.4)

From (5.2) and (5.3), we see that only complex modes exist for 0# x# n .  The following features 

for the present choice of δ is noticed :

(i)  The neutral mode has ω which is given by nX0  at short distances and thus is a very slow mode.

(ii) � At large distances, i.e., x& n, ~=! 1!iR Wf x /2 2 .  Since | ω | monotonically increasing, 

perturbations form trailing or leading spirals. 

(iii)  The oscillation period of the unstable mode is same as the growth time at large distances.

6.  Amplitudes of perturbation

The amplitudes of perturbation are determined by (3.9), (2.12) and (2.15), which, for convenience, 

are recapitulated below :

  R
lR =- r

1 + u~
l~
u~2+igk
u~2-igk

- r
n

u~
rX0
l　+2X0 - u~2+igk

X0
2+f 2/4

r
n2 +k2rS X+i u~+ u~

igkT Y
R
D 0R W

,   (3.9)

  iZ 1R W=- u~2+ikg
g l~ R,   (2.12a)

  D 1R W=- u~2+ikg
l~ u~ R,   (2.12b)

  iP= r X0
2+ 4

f 2T Y
u~2+ikg
u~ R,   (2.12c)

  iH= u~
rX0
l　+2X0 +n u~2+ikg

X0
2+f 2/4U ZR,   (2.15a)

  Z 0R W= u~2+ikg
g l~ / u~-ikr X0

2+f2/4R W
R- u~

g
iD 0R W.   (2.15b)

In our arguments, the initial density perturbation is assumed to be absent, i.e., D(0)=0.  Apart from 

normalization, R is determined by the above set of equations once the background field, the azimuthal 

and vertical wavenumbers and the eigenfrequency are specified.  We have seen that the azimuthal 

wavenumber is restricted as n$2.  (2.12a) implies that Z(1) is generally nonzero and the gravity 

causes the temporary linear growth of the vertical perturbation dvz.  This effect will emerge as the 

rapid growth of the vertical propagation rate of kinetic energy. 

Now, we solve (3.9) for n=2.  Unfortunately, solving (3.9) is suffered from an obstacle that the 
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solution is very sensitive to the value of u~ near r=0, while the roots of the EFE are accompanied with 

numerical errors that one cannot let small enough within the calculation method available to the pres-

ent author.  Nonetheless, we know that R(0) must exactly vanish.  Therefore, one is allowed to add 

a very small analytic function to the numerically determined ω so as for | R(r) | near r = 0 to become 

sufficiently small with keeping ω(r) be the solution of the EFE within our calculation precision in the 

whole region of r.  The result is given in Fig. 5.  The same background field and the parameters 

have been adopted as the ones in Fig. 2.

Three physical solutions corresponding to the stable, unstable and neutral modes exist.  All three 

solutions smoothly approach zero as r" 0.  In intermediate region, the stable and unstable solutions 

slowly oscillate.  Since | k | = 0.1 km-1 in our valculations, their maxima are at about 150 km.  This 

is a few times far outside of the eye wall of characteristic typhoon (The location of the eye wall has 

been set equal to 30 km from the symmetry axis). 

Re R for the neutral mode increases with r approximately linearly.  This is due to the smallness of 

ω as compared to X and | igk |. 

Other amplitudes are calculated by using (2.12) and (2.15).  We also give the result for iΘ in Fig. 

5.  By the same reasoning concerning R, Θ(0) must be zero.  This is guaranteed by (2.15a), which, 

by virtue of (3.5), is written at r=0 as 

  iH 0R W=-R 0R W.   (6.1)

We here mention other strict conditions imposed on these amplituds.  Since δ=-π/2 in the pres-

ent calculations, igk is real and all the coefficients of the equation (5.1) are real.  Therefore, its two 

physical roots are mutually complex conjugate, which means that the corresponding two physical 

solutions to (3.9), (2.12) and (2.15), except for (2.15b), are also mutually complex conjugate.  Con-

sequently, in case the real parts are of the same signs, we have

 
Re R sR W=Re R uR W, Im R sR W=-Im R uR W,

Re iH sR W=Re iH uR W, Im iH sR W=-Im iH uR W,
  (6.2)

where the superscripts (s) and (u) denote stable and unstable mode, respectively.  From Fig. 5, we see 

that the above conditions are less accurately satisfied for iΘ and the numerical precisions are quite 

limited.  One should mainly heed functional tendencies. 

One readily notice that uθ is easily perturbed by the neutral mode.  With reference to Fig. 2, we see 

that it will take a time of about ln(103)/0.002 s.1 hour around x=5 for the unstable mode to catch up 
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in magnitude with the neutral perturbation. 

Concerning the other amplitudes, the curves of imaginary part vs. real part for unstable Z(1), Z(0), iP 

and D(1) are plotted in Fig. 6. 

Note that the real and the imaginary parts of each amplitude are of the same order.  However, con-

cerning the amplitudes themselves, iP is 102 smaller than others (Remember that the amplitudes of the 

density and pressure perturbations have been defined by ρP and ρD).  We have known that, when 

gravity is absent, the former are real and the latter are pure imaginary (Takahashi 2013).  The gravity 

produces noticeable phase shifts for perturbation amplitudes.

When the radial velocity component locally varies, the mass conservation will necessarily give rise 

to the variation in the z-component, if fluid is incompressible.  The result shown in Figs. 5 and 6 

means that, for a compressible fluid, the response to local variation of vr emerges as the change in vθ, 

vz and ρ. 

7.  Summary 

The perturbations around the steady axisymmetric vortex with vr= vz= 0, vi! 0  in a uniform 

gravity have eigenfrequencies ω that are determined by a sixth-order algebraic equation.  Among its 

six roots, the three, each of which corresponds to neutral, stable or unstable mode, are physically 

acceptable.  Perturbations with the azimuthal wavenumber being equal to or larger than 2 are possi-

ble. (This result may also be intriguing in connection with the galaxy dynamics.)  vθ, vr, vz and ρ 

acquire relatively large amplitudes as compared to P.  The prominent effects of gravity emerge when 

the modulation in vertical direction exist.  At first glance, the applicability of the WKB method may 

seem to be attained with the elapse of time, since the phase involves the term Reωt.  However, it is 

dubious because the amplitudes of perturbations for the vertical velocity and the density also linearly 

increase with time. 

Appendix Axisymmetric vortices in a rotating frame

1.  Background field

The rotation of the reference frame is incorporated by introducing the Coriolis parameter f to the 

N-S equations, which are expressed as
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  2tvr+vr2rvr+ r
vi2ivr+vz2zvr- r

vi2 = o U2vr- r2
vr - r2

22iviS X-
t
12rp+fvi+Fr   (A1)

  2tvi+ r
vr2r rviR W+ r

vi2ivi+vz2zvi= o U2vi- r2
vi + r2

22ivrS X-
tr
12ip-fvr+Fi   (A2)

  2tvz+vz2rvz+ r
vi2ivz+vz2zvz= oU2vz- t

12zp+Fz.  (A3)

Solutions are sought with the condition of mass conservation

  2tt+ r
12r rtvrR W+ r

12i tviR W+2z tvzR W= 0.  (A4)

Let us introduce a new variable uθ by 

  vi= ui-fr/2.  (A5)

We further assume that all the quantities in (A1)~(A4) are stationary and axisymmetric.  Then, 

(A1)~(A4) are reduced to 

  vr2rvr+vz2zvr- r
ui2 - 4

f 2r
= o U2vr- r2

vrS X=
t
12rp+Fr ,   (A6)

  r
vr2r ruiR W+vz2zui= o U2ui- r2

uiS X,  (A7)

  vr2rvz+vz2zvz= oU2vz- t
12zp+Fz ,  (A8)

  r
12r rtvrR W+2z tvzR W= 0.  (A9)

The ν-expansion method assumes the forms vr= ovr1, vz= ovz1, ui= ui0 for the velocity field, where 

vr1 , vz1, ui0  are all independent of ν (Takahashi 2014).  Substituting the above forms to (A6)~(A9) 

yields a set of equations for the quantities vr1 , vz1, ui0.  For examples, if Fr=0, o0 terms yield

  r
ui02 + 4

f 2r
= r

vi2 +fvi+ 2
f 2r
=
t
12rp0,   (A10)

  0=-
t
12zp0+Fz.   (A11)

Here, uθ0 is a function of r only.  If f2r/2 on the middle part of (A10) is absorbed to the definition of 

p0, then (A10) and (A11) are nothing but the balance equations employed in meteorological studies 

(e.g., Charney and Eliassen 1963).  The full set of equations for the velocity field is equivalent to the 

one without the Coriolis term and gives various vortex solutions for (vr, uθ, vz) (Takahashi 2014).  The 

vortices are classified into Types I, II and III, in which Burgers’ and Sullivan’s ones are involved.  In 

the inviscid limit, the velocity field reduces to (0, uθ, 0). 
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2.  Derivation of the EFE

Perturbations around (0, vθ= uθ-fr/2, 0) obey, in inviscid limit, the equations

  2t+ r
vi2iS Xdvr- r

2vidvi = f dvi- t
12rdp+

t2
dt
2rp,  (A1)’

  2t+ r
vi2iS Xdvi+ r

dvr2r rviR W=-
tr
12idp-f dvr ,  (A2)’

  2t+ r
vi2iS Xdvz=- t12zdp+

t2
dt
2zp,   (A3)’

  2t+ r
vi2iS Xdt+ r

12r rtdvrR W+ r
12i tdviR W+2z tdvzR W= 0.  (A4)’

Together with (A10) and (A11) with Fz=-g we have (2.1) ~ (2.4).  Derivations of (2.19) and (2.20) 

are straightforward. 
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