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Abstract : The temperature distributions within steady vortices are determined via. the thermal 
diffusion equation by assuming that the steady flow of viscous fluid is maintained by a supply of 
heat. The boundary-free Burgers vortex is examined first, and, together with exact solutions, 
eight types of physically acceptable temperature distribution are numerically found. Next, a 
vortex between two horizontal boundaries is examined by a truncated Fourier expansion approxi-
mation. Non-trivial solutions are shown to exist that have correspondence to such phenomena 
as the temperature anomalies observed in typhoons on the earth and in the transition region above 
the solar chromosphere.
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1. Introduction

There exist a large number of flows analytically determined by the Navier-Stokes equation and the 

continuity equation. Among them, steady flows of viscous fluid are of particular interest because not 

only of their physical reality but also of the fact that, in spite of their dissipative nature, their steadi-

ness is unaltered in the course of time. In order for a steady flow of viscous fluid be possible, when 

no external body force is brought into operation, some other physical elements must be active which 

the NS equations and the continuity equation alone cannot capture. One likely candidate may be 

heat that is continuously supplied by the environments. In this case, the fluid will build up a struc-

ture of temperature distribution characteristic of the flow.

In this paper, we would like to focus our attention specifically to vortices because of their intriguing 

flow structures and ubiquity in nature. In fact, vortices exist over very wide range of spatial scale, 

ranging from the nano-sized ones in inviscid superfluid droplet (Gomez et al. 2014) to the galaxy-size 

of the order of 105 light years (see, e.g., Binney and Tremaine 2008). On the other hand, there are 

several simple vortices whose mathematical structures are well-known and are regarded to be proto-

types of vortices in nature as long as the velocity structures are concerned (see, e.g., Drazin and Riley 
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2006). They have one feature in common : the kinetic energy along the stream line is not conserved 

under the absence of external force. It is natural to attribute the variance of the kinetic energy to the 

variance of thermal energy. However, the thermal structures of simple vortices have not been seri-

ously explored so far despite the fact that vortices in nature are frequently driven by heat supply. We 

address a question : What thermal structures are realized in simple vortices and to what extent do the 

simple vortices simulate the thermal properties of real vortices ?

The familiar vortices that are driven by heat are typhoons. It has been observationally confirmed 

that they often possess a temperature anomaly at the centre in the form of warm core (Hawkins and 

Rubsam 1968 ; Halverson et al. 2006) due to the convergence and convection of humid air at the sea 

surface. The solar atmosphere is also a place where vortices of large scales may be expected to be 

created due to abundance of heat flow. One peculiarity observed there is the precipitous rise of tem-

perature in a relatively very thin region above the chromosphere (Carlsson and Stein 2004 ; Avrett 

and Loeser 2008). It is not known whether simple vortices are consistent to these phenomena. The 

primary purpose of the present paper is to look into the latent thermal structures of the simple vortices 

on the basis of the law of heat diffusion. We would like to successively compare the results with the 

phenomena in the earth’s and the solar atmospheres.

The temperature distribution in a simple vortex was analytically studied long ago by Rott (1959) for 

the Burgers vortex (Burgers 1948). He solved the equation that expresses the balance between the 

heat diffusion and, instead of advection, the entropy change in a flow with high Reynolds numbers, 

thereby finding solutions with radial coordinate dependence only. Obviously, such an approach is 

insufficient for comparing the theoretical consequences with the natural three-dimensional phenomena 

we are interested in.

Preliminary numerical calculations of temperature distributions for simple vortices in incompress-

ible fluid had been done for axisymmetric configuration, with an indication that the tendency of the 

temperature anomaly in typhoon was nicely reproduced by taking the thermodynamical effect of shear 

(Takahashi 2015a, 2016 (Erratum)). This result strongly suggests that the continuing supply of 

(latent) heat from the ‘environment’ can be a key mechanism to maintain the vortex motion as is the 

case for typhoon (Hawkins and Rubsam 1968 ; Halverson et al. 2006 ; Charney and Eliassen 1964 ;  

Ooyama 1966). The aim of this paper is to elaborate the previous calculation with an additional 

scope of applying the method to understand the thermal property of an analogous system, i.e., the 

solar atmosphere.

In the next section, we summarize the physics of the heat diffusion in fluid. In sec. 3 and 4, we 
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apply the heat diffusion equation to two kinds of steady vortices and put the law of heat diffusion into 

tractable forms for those vortices. One is the Burgers vortex as the representative example of having 

no boundaries and the other is a vortex with two horizontal boundaries. In sec. 5, the temperature 

distributions are calculated and their implications on phenomena of real atmospheres in the earth and 

the sun are discussed. Sec. 6 is devoted to summary and remarks.

2.  Heat diffusion equation in fluid — review —

In this section, we obtain the equation for the temperature distribution in steady flow. We start 

from the heat diffusion equation in a flow described by the velocity field u(x)

 t dt
dq
= pab
a,b
!

2xb
2ua
+

2xb
2
l
2xb
2TU Z.

b

!  (2.1)

Here, q is the thermal energy per unit mass, ρ the density, pa,b the stress tensor, T the temperature, and 

κ the heat conductivity. The first term on the r.h.s. of (2.1) is the work done on the fluid volume by 

the pressure, and the second term is the heat transfer to the volume based on Fourier’s law of thermal 

conduction. The heat is also advected by the flow and the total derivative in time on the l.h.s. is 

given by d/dt=2/2t+u$U. (2.1) expresses the energy conservation in the flow. For details, see, 

e.g., Bittencourt (2004). Phase transitions and the heat generations associated to it are disregarded, 

although these are essential elements that govern the dynamics of typhoon (Charney and Eliassen 

1964 ; Ooyama 1966). This means that, concerning a vortex in earth’s atmosphere, we regard the 

vapour as an effective environment for air flow.

The stress tensor is expressed as

 pab=- p+ 3
2
nU$uS Xdab+2nsab ,  (2.2a)

 sab= 2
1
2xb
2ua
+
2xa
2ubU Z, (2.2b)

where p is the pressure, n the viscosity and sab the rate-of-strain tensor.

Now, we express (2.1) in the cylindrical coordinate (r, i, z) by using the identity
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2xa
2ub
2xb
2ua

= 22rn rR W2+2 r2
2iui+urR W2

+22zuzR W2
a,b
!

　　　+2rui+ r
2iur-uiT Y2+2ruz+2zurR W2+ r

12iuz+2zuiS X2.

 

(2.3)

From (2.1) ~ (2.3), we have the general expression of the law of the heat generation

 

dt
dq
=
t
1

2xa
2
l
2xa
2TU Z-

t

p
+ 3

2
oU$uT Y

a=r,i,z
! U$u+2o 2rurR W2+ r2

1 2iui+urR W2+2zuzR W2# &

　　 +o 2rui+ r
2iur-uiT Y2+2ruz+2zurR W2+ r

1 2iuz+2zuiS X2# &,  

 (2.4)

where o/n/t is the kinematic viscosity, which is assumed to be constant throughout this paper.

For the axisymmetric case, terms involving 2i are dropped and (2.4) simplifies as

 dt
dq
=
t
1U$ lUTR W-

t
p
U$u+oU,  (2.5)

where U is given by

 

U= 3
4 2rurR W2+ r2

ur2 +22uzR W2- r
ur2rur- r

ur2zuz-2rur2zuzT Y
　 +2rui- r

uiS X2+2ruz+2zurR W2+2zuiR W2.  (2.6)

In case the fluid is incompressible, ur and uz are related by U$u=2rur+ur/r+2zuz= 0 and U  will be 

dominated by the contributions from shear. Hereafter, we shall call U  the shear function.

When the phase transition is absent, the heat generation will directly give rise to the temperature 

change via.

 dq= chdT,  (2.7)

where ch is the heat capacity under the circumstances the fluid is placed. It will generally depend on 

p and T, although, for simplicity, we assume that it is a constant of the order of the Boltzmann con-

stant, kB, for each degree of freedom of constituent particles. Since the fluid is in a steady state, from 

(2.5) and (2.7), we finally have

 t
1 U$ lUTR W-chu$UT= t

p
U$u-oU. (2.8)

This equation describes how the stress contributes to the thermal structure of a steady flow. In the 

following sections, we apply (2.8) to incompressible vortices (i.e., U$u= 0) with simplification that 

t, l, ch and o are constant. The temperature is a passive scalar whose thermal diffusivity is given by
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 m=
tch
l . (2.9)

Rott (1959) utilized a temperature equation similar to (2.8) to determine the temperature distribu-

tion in a linear vortex. Unfortunately, his equation is not correct because of an overestimation of the 

pressure contribution. We will come back to this point in the next section.

3.  Application of (2.8) to the Burgers vortex 

The Navier-Stokes equation for the steady axisymmetric vortex assumes invariance under the trans-

formation o"-o, ur"-ur , uz"-uz , ui" ui. The velocity field 

 u= our1 r, zR W, ui r, zR W, ouz1 r, zR WR W (3.1)

for a steady, axisymmetric and unbounded vortices is of the simplest one that fulfils the above invari-

ance. ur1, ui and uz1 are independent of o and obeys the equations

 ur1n+ r
2 -ur1S Xur1m- r2

1 - r
ur1 -ur1lS Xur1l+ r3

ur1 + r2
2ur12 = 4k2, (3.2a)

 uz1=- r
z rur1R Wl/-x rR Wz, (3.2b)

 ui= 2rr
C drre d lr ur1 lrR Wr#

0

r# .  (3.2c)

Here, k and C  are arbitrary real constants. The prime stands for a derivative in r. These equations 

are derived by substituting (3.1) to the Navier-Stokes equation and matching the coefficients of each 

order of o. The condition uz1= 0 at z=0 has been posed in (3.2b), although the origin of z-axis is 

arbitrary. The pressure is determined by the balance equation with the centrifugal force.

The continuous series of solutions to (3.2a) ~ (3.2c) has been known to exist (Takahashi 2014).　

By ‘continuous’, we mean that the azimuthal component ui with fixed k and C  changes its functional 

form continuously in accordance with the change of the third integration constant. The solutions can 

be classified into three types. The type I involving Burgers solution (Burgers 1948) consist of one 

cell. The type II involves Sullivan solution (Sullivan 1959) and consists of two cells.　The type III 

consists of three cells. In this section, we take the Burgers vortex as the example to which (2.8) is 

applied.

The Burgers vortex, which situates at the edge of the type I family (Takahashi 2004), is given by

 (3.3a)

 (3.3b)

ur1=-kr,

uz1= 2kz,
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(3.3c)

k (=(vortex’s characteristic size)−2) and C  (= circulation at infinity) are arbitrary constant.

The shear function (2.6) becomes

 U rR W=2rui- r
uiS X2+12o2k2, (3.4a)

 U 0R W=U 3R W= 12o2k2.  (3.4b)

(3.4b) means that the stress at the stagnation points is equal to the one at r=3. The Reynolds num-

ber of the vortex is the order of C/o . The Reynolds number of the typical typhoon is the order of 

1012 or greater. For such vortices, U is dominated by ui and the last term in (3.4a) is safely 

dropped. The heat diffusion equation (2.8) is expressed as

 ot
l U2T= chur12rT+chuz12zT-U. (3.5)

Here, U  is given by (3.4a) with 12 o2k2  being dropped. The corresponding equation that Rott (1959) 

derived by assuming that T is a function of r only is

 tr
1
dr
d
lr dr
dTS X= ur ch dr

dT - r
ui2T Y-o dr

dui - r
uiS X2. (3.6)

The first term on the r.h.s. expresses the contribution from entropy, in which the second term -ui2/r  

has emerged from the variation of the pressure. This term therefore implies that the decrease in the 

pressure has been used for solely absorbing heat. However, in the Navier-Stokes equation, the local 

force due to the pressure gradient affects both accelerating the fluid element and the dissipation of 

energy by stress. The inconsistency inherent in (3.6) is manifested by considering the inviscid limit 

that allows no energy dissipation. Suppose that an incompressible and inviscid fluid is bounded by 

isothermal surface. Since the heat is not internally generated, the temperature is same everywhere.　

Taking the limit o" 0 and dT/dr" 0 simultaneously in (3.6), we have urui2" 0. Now, recalling that 

k in (3.3) is arbitrary, let us scale k as k/o before taking the limit. Then, from (3.3a) and (3.3c), we 

have urui2= our1ui20"-k C/2rR W2/r! 0 in the same limit. This is a contradiction. By these rea-

soning, we adopt (3.5) or (2.8) in the following analyses.

ui0= 2rr
C 1-e-kr2/2R W.
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4.  Application of (2.8) to a vortex with two parallel boundaries

In this section we consider a vortex with two parallel plane boundaries perpendicular to the z-axis 

as a model of air flow in typhoon bounded by the sea surface and the tropopause. Of course, the 

dynamics of real typhoon involves complexities due to such important ingredients as Coriolis force, 

humidity and condensation, rain-bands, eye-walls of clouds and so on. We neglect these elements 

and focus ourselves on the air-flows of vortex to which heat is transferred from the lower boundary.　

We also neglect the friction at boundaries because the thickness of the boundary layer is several hun-

dred meters, which may be small enough as compared to the height h.15 km of the tropopause 

(Cherney 1947 ; Franklin et al. 2003).

Steady axisymmetric vortex with boundaries will not exist in case no-slip condition is imposed, the 

external force is conservative or the fluid is barotropic (Proudman 1916 ; Taylor 1917 ; Takahashi 

2015b). As usual in solving the Navier-Stokes equation, the pressure is allowed to have spatial 

dependences, too. Namely, the fluid will not be barotropic. No-slip condition on boundaries will 

not be imposed, too.

For the present purpose, it will be convenient to subject the physical quantities to the o-expansion 

together with to a truncated Fourier expansion in z. Then we assume the following forms for veloc-

ity, pressure and temperature :

 ur1 r, zR W= a1 rR Wcos k1zR W+a2 rR Wcos k2zR W, (4.1a)

 uz1 r, zR W= b1 rR Wsin k1zR W, (4.1b)

 ui r, zR W= c0 rR W+c1 rR Wcos k1zR W, (4.1c)

 pi r, zR W=r i,n rR Wcos knzR W, i= 0, 2,  (4.1d)

 T r, zR W= x0 rR W+x1 rR Wcos k1z+x2 rR Wcos k2z, (4.1e)

where kn= nr/h, n= 1, 2. These expansions are the simplest ones that are compatible with the 

invariance of the Navier-Stokes equation for a steady and axisymmetric flow under z"-z, uz"-uz.　

For large Reynolds numbers, the shear function is dominantly contributed from ui as

 

(4.2)

U=2rui- r
uiS X2+2zuiR W2

= c0l- r
c0S X2+ 2

1 c1l- r
c1S X2+k12c12# &+2 c0l- r

c0S X c1l- r
c1S Xcos k1z

　　+ 2
1 c1l- r

c1S X2-k12c12# &cos 2k1z.
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By substituting (4.1a ~ e) and (4.2) to the Navier-Stokes equation, the mass conservation and the heat 

diffusion equation, we have

 a1m+ r
1 - 2

a2S Xa1l- r2
1 + 2

a2l+k12T Ya1=- 2
k2b1 a2, (4.3a)

 a2m+ r
a2l- r2

1 +k22S Xa2= 2
a1l+k1b1 a1,  (4.3b)

 b1m+ r
b1l-k12b1=- t

k1 r2.1 , (4.3c)

 c0m+ r
c0l- r2

c0 = 2
1 a1 c1l+ r

c1S X- 2
k1 b1c1, (4.3d)

 c1m+ r
1 - 2

a2S Xc1l- r2
1 + 2r

a2 +k12S Xc1= c0l+ r
c0S Xa1, (4.3e)

 a1l+ r
a1 +k1b1= 0, (4.4)

 x0m+ r
1
x0l- 2l

tcho a1x1l+a2x2l-k1b1x1R W=-
l
to c0l- r

c0S X2+ 2
1 c1l- r

c1S X2+ 2
1 k12c12# &,  

(4.5a)

 x1m+ r
1
x1l-k12x1- l

tcho a1x0l+ 2
a1x2l+a2x1l-k2b1x2T Y=-

l
2to c0l- r

c0S X c1l- r
c1S X.  

(4.5b)

With the truncated Fourier series (4.1), it is impossible for the equation (2.8) to hold for all modes 

exactly. In deriving the above equations, therefore, we gave precedence to the lower modes with x2 

being determined by the boundary condition, i.e., T r, 0R W=T0 rR W, or, from (4.1e),

 x0 rR W+x1 rR W+x2 rR W=T0 rR W.  (4.6)

Let us seek the simplest solution by positing

 a1 rR W= a11r, a2 rR W= a21r, (4.7a)

 b1 rR W=r2.1/tk1/ b, (4.7b)

where a11, a21 and b are constant provided that these satisfy (see (4.3a), (4.3b) and (4.4))

 a11a21+k2a11= kba21, (4.8a)

 a112+kba11=-8k2a21, (4.8b)

 2a11+kb= 0, (4.8c)

with k/ k1. Nontrivial roots of (4.8) are given by

 k2
a11 =" 3

8 , k2
a21 = 3

1 , k
b =!2 3

8 . (4.9)
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We adopt the upper signs in (4.9), which stand for a vortex that swirls inward, rises to higher eleva-

tions and then swirls outward. Then c0 and c1 that are determined from (4.3d) and (4.3e) are shown 

in Fig. 1. c0 and c1 behave linearly near r=0. At long distances, they decay as 1/r and 1/r3, respec-

tively. Being constructed from these c0 and c1, ui0 at z=h has the same sign as the one at z=0. If 

the Coriolis force were taken into account, there would exist points where ui0  changes its sign just like 

the real typhoons.

Now that the velocity field has been determined, the temperature will be found by solving (4.5a) 

and (4.5b) with the boundary condition (4.6).

5.  Temperature distributions in vortices

5.1  Solutions to the homogeneous equation for Burgers vortex

Temperature T as the solution to (3.5) is given by a sum of the solution of the homogeneous equa-

tion, Thomo, and the particular solution, Tpat, to the inhomogeneous equation. We first look for Thomo 

which is generally z-dependent.

Separating the variables by

 Thomo= f rR Wg zR W+T0, (5.1)

(2.8) or (3.5) with U  being omitted reduces to two ordinary differential equations 

 mf + r
1 +

m
ok rS X lf +Cf= 0, (5.2a)

 
mg -

m
2ok z lg -Cg= 0,

 (5.2b)

Fig. 1  c0 and c1 as functions of r. The units of abscissa and ordinate are arbitrary. c0+c1 and c0-c1 are ui0 
at z=0 and h, respectively.
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where C is an arbitrary constant that gives a length scale of variation by ;C ;-1/2 for small ok/m. m 

was defined by (2.9). We are interested in the case C! 0.

It is not difficult to find f and g for the Burgers vortex. We define a dimensionless parameter a by

Fig. 2  f for positive a as obtained by solving (A4a) in Appendix A. Normalization is arbitrary. The value 
of a is indicated nearby each curve. The behaviours of f near r=0 are conventionally chosen as 
(a) : 1-r2/4, (b) : (1-r2/4)lnr. C is an additional free parameter that is involved in equations 
(5.2). (k is determined by (5.3)). The units of abscissa and ordinate are arbitrary.

Fig. 3  f for negative a. Normalization is arbitrary. The numbers in the figures denote | a |. The distinc-
tion between panels (a) and (b) is same as in Fig. 2.
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 a=
ok
mC = kPr

C  (5.3)

with k being the parameter used to specify the velocity field in (3.4). Pr= o/m is the Prandtl number.　

The functional forms of f and g are determined essentially by a. (5.3) implies that a has the same 

sign as C. The solutions to (5.2a) and (5.2b) are shown in Fig. 2-3 and Fig. 4-5, respectively, for 

several values of a. See Appendix A for the details of deriving and solving (5.2).

The functions f depicted in Fig. 2-3 exhibit power law behaviour r-a at long distances. The rate 

of change of f becomes larger with ;a ; . The function g depicted in Fig. 4-5 exhibit either power 

law decays with r or exponential growth. The eight possible combinations of f and g are given by 

[Fig. 2, Fig. 4] and [Fig. 3, Fig. 5]. Notice that in the latter combination the exact solution for a=−2 

exists :

 f= 1+;C ; r2/4, g= z. (5.4)

We will employ (5.4) in later numerical calculations.

Next, we seek a particular solution Tpat to the inhomogeneous equation (3.5). That U  is a function 

of r only may suggest Tpat also to be a function of r only. Then (3.5) takes a form

Fig. 4  g for positive a. g’s are obtained by solving (A4b) in Appendix A. Normalization is arbitrary. Con-
ventional boundary conditions are (a) : g(0)=1. g'(0) were appropriately chosen so as for g(z) not to 
diverge at large z. (b) : g(10-3)=1, g'(0-3)=103. The value of a is indicated nearby each curve.　
The units of abscissa and ordinate are arbitrary. Note the difference in the scale of abscissa of Fig. 3 
and Fig. 4, indicating the necessity of very fine tunings of initial conditions to obtain non-divergent 
solutions depicted here.
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 Tpatm+ r
1 +

m
ok rS XTpatl=- m

ot
U. (5.5)

The analytic expression of Tpat is given by

 Tpat rR W=T1- m
ot e-C lr 2/2a

lr
d lr

U mrR WeC mr 2/2a mr d mr ,
0

lr#
0

r#  (5.6)

where T1 is a constant. Note that Tpat does not affect the z-dependence of the solution.

5.2  Temperature for Burgers vortex

Before solving the temperature equation in its full form, let us evaluate the relative importance of 

the shear term U  in (5.5). Keeping the atmospheres of the earth and the sun in mind, we can crudely 

estimate the r.h.s. of (5.5). It turns out to be the order of 10−6 K・m−2 for the earth atmosphere and 

10−11 K・m−2 for the solar atmosphere. On the other hand, the l.h.s. of (5.5) may be estimated by 

kTobs, where Tobs is the observed typical temperature and k−1/2 is the characteristic linear size of the vor-

tex, thereby obtaining kTobs ~ 10−6 K・m−2  for the earth and 10−8 ~ 10−6 K・m−2 for the sun. There-

fore, concerning the sun, we can neglect the shear term in (5.5) and the temperature is given by the 

homogeneous solution f(r)g(z). See Appendix B for the details of these estimations.

Tpat for the earth-like atmosphere in the sense mentioned above is shown in Fig. 6. Notice that it is 

virtually constant in the region designated. This implies that the appreciable temperature change, if 

Fig. 5  g for negative a. Normalization is arbitrary. Conventional boundary conditions are (a) : g(0)=1, 
g'(0)=0, (b) : g(0)=0, g'(0)=1. The value of | a | is indicated nearby each curve. The units of 
abscissa and ordinate are arbitrary.



Thermal Structure of Steady Vortices on the Earth-like and the Sun-like Atmospheres

51

any, will be realized by the homogeneous solution.

We examine the implications of the solutions on the phenomena in the earth-like and the sun-like 

atmospheres.

Earth-like atmosphere (One boundary at z=0) : The values of such physical quantities as the tem-

perature, the density and the viscosity are taken as of the same orders of those of the air on the earth.　

Moisture is entirely disregarded. In the circumstances on the earth, Tpat will not generally be 

neglected (see Appendix B), so that the solution must be sought as a linear combination of Thomo and 

Tpat as 

 T=Tpat+Thomo, Thomo=-5#10-6f rR Wg zR W+constant. (5.7)

Tpat has been presented in Fig. 6. For simplicity, we choose the exact solution (5.4) for Thomo. This 

means that the boundary conditions 

 T r, z= 0R W=Tpat rR W+constant,  (5.8a)

 T r, z"3R W"-3.  (5.8b)

are imposed. An example of the temperature distribution thus obtained is presented in Fig. 7.

We define the temperature anomaly at a given height z by

Fig. 6  Particular solutions (5.6) for Burgers vortex. Boundary conditions are Tpat(0)=300 K, dTpat/dr(0)=0.　
For the employed physical constants and parameters, see Appendix B.
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 DT r, zR W=T r, zR W- S
2r T r, zR W# rdr,  (5.9)

where S is the area of the maximum horizontal circle in which the calculation is made. DT r, zR W is 

also shown in Fig. 7.

The temperature is dependent on both r and z. The lower as well as central part is warmer than the 

exterior or higher region because of the choice (5.7) for Thomo, thereby forming a ‘warm core’ of DT  in 

the higher elevation around the symmetry axis. If the sign of Thomo were inverted, the opposite situa-

tion would result.

Nontrivial thermal structures have turned out to be inherent generally in the Burgers vortex. How-

ever, an obvious deficit of applying it to the earth’s atmosphere lies in that the Burgers vortex is 

unbounded. The vortex with two boundaries, whose mathematical analysis has been given in sec. 4, 

will be considered in the next subsection.

Sun-like atmosphere : The solar surface is a good place where the model of the Burgers vortex can 

be applied. The surface and outer regions of the sun are conventionally divided into the photosphere, 

the chromosphere and the corona, which are differentiated from each other by spectroscopy. See, 

e.g., Audouze (1994). The temperature in the sun’s atmosphere shows a sudden increase, from 104 K 

to 106 K, in the transition region as thin as 103 km or less between chromosphere and corona. Ioniza-

tions and recombinations of hydrogen and other elements, chromospheric heating and associated 

Fig. 7  Upper left panel : T (arbitrary constant can be added.) ; Upper right panel : DT r, zR W ; abscissas : r with 
max(r)=310 km, ordinates : z with max(z)=15 km. Lower panel : ui0 for the Burgers vortex.　
max(ui0)=30 m・s-1, a=0.1 and C-1/2=45 km. Temperatures are plotted as contours of the spacing 
of 1 K and are also shown as colours ranging from red (high) through purple (low). Values of T and 
DT r, zR W are given on some contours.
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energy flow may be responsible for this anomalous phenomenon (see, e.g., Carlson and Stein 2004 ;  

Avrett et al. 2008). We here notice that the function g(z) introduced by (5.1) also has a transient 

region where steep increases are observed as are depicted in Fig. 3(b), Fig. 4(b) or Fig. 5(b). Choos-

ing the parameters appropriately, this behaviour can be smoothly connected to other solution beneath 

the transient region. This smooth connection results in an almost flat behaviour of g in the lower 

region, as is shown in Fig. 8.

As was already argued, for understanding the temperature variation in the solar atmosphere, the 

homogeneous solution f(r)g(z) will be sufficient if the solutions of these types mentioned above are 

applied. On the other hand, if we require that the variation over the radial direction, i.e., the direc-

tion parallel to the plane tangential to the solar sphere, is not large, then, from Fig. 2 and Fig. 3, 

a1 0.1 may be favourable. Adopting for the Prandtl number the value Prsun= osun/msun.14 (see 

Appendix B), we have a condition a= 1/PrsunR W C/kR W. 0.07C/k1 0.1 (a has been defined by (5.3)).　

Thus the order of the scale parameter C−1/2 in the figures may be same as or larger than that of horizon-

tal scale k−1/2 of the vortex (see (3.3c)), which can be chosen as 107 m if the vortex is associated to the 

sun spot as is argued in Appendix B. From. Fig. 8, the thickness C1/2d. 0.1, or d. 0.1/k1/2. 103 km. of the zone within which g 

increases one hundred times larger with altitude is given by C1/2d. 0.1, or d. 0.1/k1/2. 103 km.　

Instead of the sun spots, the granules of 106 m in size may be possible to provide the scale k−1/2 of the 

vortices. In this case, we have d. 102 km. These estimations seem not inconsistent with the 

observation.

Fig. 8  Steeply rising g(z) for positive a : a=0.1 (solid curve), 0.5 (dotted curve), 2 (dashed curve). The 
functions in C z$ 1 are smoothly connected with the solution that is obtained with a=0.0016 and is 
almost flat in lower region (dotted curve in the lower left). These solutions are obtained under the 
conditions g(C-1/2)=1, dg/dz C1/2 z=1=500C1/2. The origin of z is arbitrary.
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The Burgers vortex with no azimuthal shear must have a very weak swirling on the solar surface, 

provided that the Lorentz force is balanced with the magnetic pressure gradient in plasma (see Appen-

dix B). In this case, the motion of the fluid will look like the Burgers flow with no azimuthal compo-

nent of the velocity.

If the present scheme of the vortex interpretation for the rapid temperature change above the chro-

mosphere is applied also to the inside of the chromosphere and the function g is extrapolated to 

smaller z, then a drastic change in the value of a defined by (5.3) from 0.1 to 0.002 is necessary. One 

interpretation for this situation is that the Prandtl number is two order of magnitude larger for the 

chromosphere than for the transition region. However, this is unlikely because the heat conductivity 

in the chromosphere will be larger. Therefore, the decrease of C will be responsible for the decreases 

of a. The physical meaning of this phenomenon is unclear.

5.3  Vortex with two boundaries

Finally, we calculate the temperature of the vortex with two horizontal boundaries separated each 

other by the distance h. As the boundary condition, the surface temperature T0(r) at z=0 of a rather 

arbitrarily chosen form is adopted :

 T0 rR W= 1+ r/2R W2TS0 .  (5.8)

This functional form models the high temperature of a local sea surface on which typhoon is born.　

Fig. 9  T (upper panels) and DT r, zR W (lower panels) for the vortex with two horizontal boundaries that are h=15 km 
apart. For T, an arbitrary constant can be added. The arrows indicate the position of the maximum of 
ui0 at z=0. Some values of DT r, zR W(r,z) are indicated on contours. TS0=0.1 K, 10 K and 20 K from left 
to right. The spacing of neighbouring contours in the graphs of DT r, zR W is 1 K for TS0=0.1 K and 
TS0=10 K, while it is 5 K for TS0=20 K. For azimuthal velocity, we set max(ui0(r, z=0))=40 m・s-1.
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(4.5a) and (4.5b) are solved by employing the velocity field determined in sec. 4. The particular 

solutions for three cases TS0=0.1, 10, 20 K are shown in Fig. 9.

The maximum temperature differences, max(T) − min(T), are 11, 28 and 57 K for TS0=0.1, 10 and 

20 K, respectively. As is expected, the temperature difference gets larger with the surface tempera-

ture difference. Other characteristic features of each case are briefly summarized below.

i) TS0=0.1 : This is as the representative of the cases of zero or extremely small temperature dif-

ferences in the lower boundary. The maximum temperature is at the middle altitude on the sym-

metry axis. Thus a warm ball is formed. The lowest temperature is at the centre of the upper 

boundary. The temperature anomaly DT r, zR W is also largest at the middle point of the axis. DT r, zR W is 

smallest at the centre of the upper boundary, i.e., a cold core exists there.

ii) TS0=10 : The maximum temperature is at the centre of the lower boundary. As the altitude 

gets higher along the axis, the temperature gets lower and reaches a minimum and then again 

becomes higher. The lowest temperature is at the outermost between two boundaries. Thus a 

cold belt surrounds the axis. The largest DT r, zR W is at the middle point of the axis, which is again 

akin to the so called ‘warm core’ in typhoon. The smallest DT r, zR W is at the farthest point from the 

axis. At a given altitude, the temperature anomaly is largest at the axis.

iii) TS0=20 : The situations are generally similar to the case of TS0=10, except that the central tem-

perature is higher.

The features summarized in i), ii) and iii), which are contrasted with the Burgers vortex discussed 

in the previous subsection, are quite similar to the observed warm core-pillar structure in typhoons 

(Hawkins and Rubsam 1968 ; Halverson et al. 2006), although the height of the warm core calculated 

here is lower than that of the real typhoon. The warm core already exists when the temperature on 

the lower boundary is uniform. Comparing the cases of TS0=10 and 20 with TS0=0.1, we may con-

clude that the existence of a locally warm region in the sea surface is responsible for the formation of 

the distinct warm core-pillar, albeit a warm lump in T is also formed on the upper boundary.

6. Summary and remarks

The temperatures within vortices were calculated by employing the law of heat transfer, assuming 

that the vortices are maintained by heat supply. The boundary-free Burgers vortex and the one with 

two boundaries were chosen for the calculations. For these cases, significant temperature variances 
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over the vortex were observed.

Eight types of physically meaningful temperature variations were found for the Burgers vortex.　

The two of them seem to bear physical correspondences in nature, i.e., either to the solar-like or the 

earth-like atmospheres. In particular, a very slow variation followed by a steep rise of temperature 

with height found for the Burgers vortex is quite similar to that is actually occurring in the solar atmo-

sphere. We may anticipate that the Burgers vortex will serve as a prototype of stellar atmosphere.

The vortex with two boundaries was found to be able to capture the qualitative characteristics of the 

thermal property observed in real typhoons. This result, somewhat amazing when we think of the 

simplest truncation method in the Fourier expansions utilized, suggests the significance of the bound-

ary condition in understanding the temperature anomaly. In real typhoons, the condensation and pre-

cipitation in moist air are crucial in bringing about the peculiar thermal structure (Charney and Elias-

sen 1964 ; Sundqvist 1970 ; Nong and Emanuel 2003) because of the large specific heat of water.　

When the temperature at the lower boundary is almost uniform, the temperature first rises with the 

altitude and then decreases, so that the phase transition of moisture will take place near the upper 

boundary. On the contrary, when an appreciable lump of high temperature exists on the lower 

boundary, the temperature decreases at the middle point of the altitude and the liquefaction of mois-

ture will take place around there. In both cases, the advection will shift the position of the warm core 

to higher elevation. What we have seen in the present work is that the warm core or warm pillar 

always exists in vortices of viscous fluid. Thus we can anticipate that the analogous thermal struc-

ture will exist in tornado, too.

The simple vortices discussed in this paper are lacking in many physical factors operating in form-

ing the real atmosphere in nature, whose investigations require handling of large data on ingredients 

(See, e.g., Carlsson and Stein 2004 ; Avrett and Loeser 2008 for solar atmosphere, Ohno and Satoh 

2015 for typhoon, together with references cited therein). Nevertheless, the thermal structure dis-

cussed in this paper is generic and must be heeded in studying vortices.

The gravity was totally neglected in this paper. This may be partly justified by the smallness of 

the change of gravity strength over the height we considered, as long as the fluid density depends only 

on z.

In this paper, it was elicited that temperature variations are generally inherent in the flows presented 

as the solution of the Navier-Stokes equation with absence of particular external force. Viscosity is 

known to vary with temperature. That temperature varies over vortex (or fluid) raises a question :  

Should the kinematic viscosity in the Navier-Stokes equation be treated as a function of temperature 
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when the scale of the vortex is large ? In other words, is the temperature or the kinematic viscosity 

really passive scalars ? This problem is worthy of future study.

Appendix A : Solution to the homogeneous equation

Omitting the source term in (3.5), we start with the static homogeneous equation

 ot
l U2Thomo-chur12rThomo-chuz12zThomo= 0.  (A1)

ur1 and uz1 are given respectively by (3.3a) and (3.3b). Separating the variables, write 

 Thomo= f rR Wg zR W+T0, (A2)

where T0 is a constant, and substitute (A2) to (A1) to obtain

 ot
l
rf
1 r lfR Wl-chur1 f

lf
=-

ot
l

g
mg
+chuz1 g

lg
/-

ot
l C. (A3)

Here, the prime denotes a derivative with respect to the independent variable of each function. C is a 

constant. From (A2), we obtain a set of equations (5.2a) and (5.2b) in the text. a, being given by 

(5.3), and C must have the same sign. We consider two cases, a2 0,C2 0 and a1 0,C1 0, sepa-

rately. 

(1)　a2 0,C2 0

By scaling the variable by r" r/ C  and z" z/ C  and using (3.3), we rewrite (A3) as

 mf + r
1 +

a
rS X lf +f= 0, (A4a)

 mg - a
2 z lg -g= 0. (A4b)

At infinity, f exhibits a power law behaviour for general a

 f" r-a , r"3,  (A5)

which means that the temperature becomes lower with the distances from the centre. This behaviour 

will dominate over the other possible one f" r-aexp -r2/2aR W.
Near r=0, (A4a) allows two behaviours, ~ constant and ~ r. These initial behaviours yield the 

solutions consistent with the assumed asymptotic behaviour (A5), which are shown in Fig. 2 and Fig. 

3 in the text for several values of a.

a=2 is a special value, for which the exact Gaussian solution is also found :

 f rR W= e-Cr2/4　for　a= 2. (A6)
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Another particular value of a is unity, for which the solution is generally written as

 f rR W= e-Cr2/4 a1I0 Cr2/4R W+a2K0 Cr2/4R WR W, for a= 1, (A7)

where I0 and K0 are the modified Bessel functions of the first and the second kind, respectively. In 

this case, near r=0 and at large distances, f behaves as

 f rR W. 1- 4
Cr2S X a1+a2 ln 2-c-ln 4

Cr2S X# &. a1+a2 ln 2-c-ln 4
Cr2S X, near r= 0,  (A8)

and

 f rR W" e-Cr2/4 a1
rCr2/2
eCr2/4

+a2 Cr2/2
r e-Cr2/4U Z" r

a1 , r"3, (A9)

respectively. c is the Euler’s constant. a2 must be zero if the logarithmic singularity at r=0 is dis-

favoured, although there may be no reason for this choice because the logarithmic singularity at a 

point will not cause any difficulty in physical measurements.

Apart from the overall normalization, the limiting behaviours of g are of the following forms

 g. 1+ 2
Cz2 , z- 3a

1 + 6
1S XCz3, z. 0, (A10a)

 " z-a/2 , z
a eCz2/a , z"3.  (A10b)

The solutions that are finite or vanish at r=0 decay or grow rapidly at large z, respectively.

For a=2, one can find one exact solution to (A4b) 

 
g zR W= z eCz2/2K1/4 Cz2/2R W. 1+ 2

Cz2 , 　z. 0,
" eCz2 , 　z"3.
G  

(A11)

where K1/4 is the modified Bessel function of the second kind.

(2)　a1 0,C1 0

As in the previous case, let us rewrite (A4a) in terms of the variable lr =;C ;1/2r  as

 mf +
lr
1 +

;a ;
lrT Y lf -f= 0.  (A12)

The asymptotic behaviour of f is again given by (A8) and now diverges at infinite distances. Near 

r=0, f behaves as

 f+ 1+;C ; r2/4. (A13)

The r.h.s. is exact for a=-2.

We note that 
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 g=z (A14)

is also the exact solution for a=-2.  Generally the behaviour of g is given by

 g. 1- 2
;C ; z2 , z+ 3 ;a ;

1 - 6
1T Y;C ; z3, z. 0,  (A15a)

 " z-;a;/2 , z-1e-Cz2/a , z"3.  (A15b)

Independent solutions for a1 0,C1 0  are depicted in Fig. 4 and Fig. 5 in the text.

Appendix B : Physical parameters of the earth’s and solar atmospheres

In this appendix, all the physical quantities are expressed in MKSA unit. The physical constants 

of the air on the earth are well determined. For the purpose of the order estimations, we adopt the 

following values : tE=1 kg・m−3, ch,E=103 J・K−1・kg−1, oE=2#10−5 m2・s−1, lE=2#10−2 J・

m−1・s−1・K−1, mE= lE/ tEch,ER W.2#10−5 m2・s−1. The suffix ‘E’ (and ‘S’ below) stands for values 

for the earth’s (and solar) atmosphere. These values give mE/oE. 1.  For the vortex parameters, we 

adopt kE=10−8 m−2, CE=2#106 m2・s−1. From (3.4) and (3.5), the contribution of the shear func-

tion UE  to the thermal diffusion is given by ot Ck/4rR W2/l;E= o/mR W Ck/4rR W2ch;E  and is estimated as 

2#10−9 K・m−2. The typhoon’s typical value of dT/dr is 10−4 K・m−1 (Halverson et al. 2006), so 

that the order of the remaining terms may be k1/2 dT/dr . 10−8 K・m−2. Thus the U  term will not be 

ignored.

The situation is subtle for the solar atmosphere. Besides, it is not known whether vortices are 

formed in the solar atmosphere or how large they are, if any. Various physical processes, e.g., excita-

tions, dissociations and recombinations of atoms, excitations of collective motions and so on will 

affect the physical constants in thermo-fluid dynamics. Therefore, we stay at very rough order esti-

mations. The relevant density, temperature and the heat capacity in the transition region are tS.

5#10−10 ~ 5#10−12 kg・m−3 , TS .104 ~3#105 K and ch,S .3#104 J・K−1・kg−1, respectively. The 

difference in temperature DTS within the transition layer reaches as high as 3#105 K. According to 

the classical molecular kinematics, the kinematic viscosity will be corrected from the air value by a 

factor mS/mER W1/2 TS/TER W1/2/ tS/tER W vS/vER WF I, where m and v are the representative mass of particles in 

the atmosphere and their collision cross section, respectively. Similarly, mS= lS/ tSch,SR W. mE mS/mER W-1/2 TS/TER W1/2/ tS/tER W vS/vER W ch,S/ch,ER WF I
mS= lS/ tSch,SR W. mE mS/mER W-1/2 TS/TER W1/2/ tS/tER W vS/vER W ch,S/ch,ER WF I for the heat conductivity. Thus mS/oS. mE/oER W mE/mSR W ch,E/ch,HR W. mE/oE.
mS/oS. mE/oER W mE/mSR W ch,E/ch,HR W. mE/oE.

One candidate of the place where vortices are formed may be a strongly magnetized sunspot, whose 



東北学院大学教養学部論集　第 176号

60

size is the order of 107 m, to which we equate kS
−1/2. Assuming that the Lorentz force on the fluid 

moving with the azimuthal velocity ui  is balanced with the gradient of the magnetic pressure BS
2/2n0 , 

where n0  is the magnetic permeability of vacuum, then eBSui/mS. ,-1 BS
2/2n0R W/tS. Here, e is the 

electric charge of the proton, mS the proton mass and ,  the length scale of the gradient of the magnetic 

field. Using a value BS. 0.3 tesla and writing ,=bkS-1/2 , we have kS-1/2ui. 2#106/bm2$s-1  and 

thus for the circulation, CS. 2rkS-1/2ui. 107/bm2$s-1. With these values, US= ot Ck/4rR W2/l;S. 2#10-21/b2K$m-2.

US= ot Ck/4rR W2/l;S. 2#10-21/b2K$m-2.  On the other hand, in the transition region of the thickness d. 3#102  km, 

the laplacian term in (3.5) may give rise to a contribution d-2DTS. 3#10-6 K$m-2. Thus, for rea-

sonable values of b,US is extremely small as compared to the laplacian term and can be ignored.
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