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Abstract : A new Eulerian variational principle that derives the Navier-Stokes equation for 
incompressible fluid is presented.  The Lagrangian is constructed in terms of a field expressed 
by a two by two complex matrix so as for the stationary action principle to give the correct fluid 
dynamics.  When the matrix field is traceless and can be decomposed to a vector that is identi-
fied as the velocity field, the stationary action principle without any additional constraints yields 
the Navier-Stokes equation.  Next, a complex scalar field as the centre of GL(2,C) is introduced 
into the matrix field.  Then, two kinds of extensions of Lagrangian are considered.  In the first, 
the interaction involves terms up to the second order in the field.  When the Lagrangian is real 
and the fields are limited to the real space, the velocity obeys the ordinary Navier-Stokes equa-
tion, and the scalar behaves as a diffusive entity.  In the second extension, the interaction 
involves the third power of the field.  In the real space of the component fields, the field equa-
tion reduces to a system similar to the eddy-viscosity equations with the scalar and the vector 
being interpreted as the eddy viscosity and the mean velocity, respectively.  When applied to 
turbulent channel and pipe flows, the model of the second extension satisfactorily reproduces the 
mean velocity profiles observed in experiments over the viscous sublayer and the so called ‘loga-
rithmic’ region.
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1.  Introduction

The mathematical problem of how the Navier-Stokes equation is derived by the variational princi-

ple in classical mechanics has been challenged in many works.  The Euler equation for non-dissipa-

tive fluid is known in fact to be derived by the variational principle.  One way to see this is to con-

sider the Lagrangian path g(t, g0) of a fluid element, where g0 is the initial position of the 

element.  The velocity and the acceleration are given by

u t, gR W=
2t
2 g,
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Therefore, by adopting the Lagrangian density of the form

together with the principle of stationary action

leads to the Euler equation (see, e.g., Yasue 1983).  The velocity term in L has a clear physical mean-

ing of the kinetic energy density also constitutes the norm for the Liyapunov stability criterion.  For 

the Hamiltonian formalism, see, e.g., Salmon (1988).

Construction of the action principle for the Eulerian field theory is also possible.  This is conve-

niently achieved by introducing the notion of time-independence of the initial position of each 

Lagrangian path into the action by employing the Lagrange multipliers (Lin 1963 ;  Mittag et al. 

1979).  Construction of the Eulerian action in view of gauge principle has also been proposed by 

Kambe (2007).

The presence of the viscosity Du  term changes the situation.  This may be intuitively understood 

by noting that the viscosity term in the N-S equation is linear in u.  Therefore, as long as the geode-

sic g is regarded as the independent variable subjected to variation, one cannot construct a nontrivial 

term that is bilinear in g. 

  The way to correctly produce the viscous term through the action principle is to regard the dissipa-

tion as a random process, thereby reformulating the variational principle into the stochastic one.  In 

terminology of the probability theory, the idea is based on that the generator of the semigroup of the 

Markov process is given by the Laplacian D  that has the counterpart of the viscous force in the N-S 

equation.  This approach was originally addressed by Inoue and Funaki (1979), Yasue (1981), 

Nakagomi et al. (1981), whose mathematical foundations including the verification of the existence of 

the stochastic least action have been provided by many authors.  For recent works, see, e.g., Cipriano 

and Cruzeiro (2007), Constantin and Iyer (2008), Eyink (2010) and references cited therein.  The 

velocity in stochastic formalism is therefore regarded to represent the dissipation velocity.

Since the N-S equation for the velocity field is derived within classical deterministic dynamics, it is 

natural to ask if a field theory that is defined by deterministic action principle is possible.  One 

approach along this line was surveyed by Fukagawa and Fujitani (2012) which succinctly preserves 

the notion of deterministic path of particle in classical mechanics.  Employing the Lagrange multipli-

dt
d u t, gR W=

2t
2 u+u$Uu.

L= 2
t og2+g$Up

d L# dxdt= 0
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ers to guarantee the energy conservations in closed system, they showed that the N-S equation can be 

derived by the minimization of the effective action that incorporates the constraints by the Lagrange 

multiplier method.  In their model, however, the N-S equation is not at the total derivative of the 

effective action since one of the constrains is necessarily non-holonomic.  Here, a constraint is called 

non-holonomic when it is an equation of motion of some physical quantity that is not derivable from a 

total derivative of action. 

The author (Takahashi 2016) previously proposed a mean field model of turbulence based on the 

variational principle with a constraint and showed that the mean velocity calculated in the model is 

entirely consistent with some experiments on turbulent flow.  The constraint adopted there was also 

non-holonomic. 

It seems difficult to incorporate the dissipative process into a framework of deterministic field the-

ory based on the canonical action principle unless the meaning of the Hamiltonian is altered (Salmon 

1988).  Salmon gave a following example.  Let us take the heat conduction equation : oT-mDT= 0 

with a positive constant m .  The action may be written as a# oT-mDTR Wdrdt , where the Lagrange 

multiplier a is an auxiliary field that obeys a cohesive equation oa=-mDa.  This leads to a ‘Hamil-

tonian’ - mUa$# UTdr.   The physical meaning of the auxiliary field a is unclear, although T and a 

emerge symmetrically.

To the author’s knowledge, no Eulerian field theory of viscous fluid based on the deterministic 

action principle has been found.  The purpose of the present paper is to propose a method of the 

deterministic stationary action principle that leads to the N-S equation for incompressible fluid.  The 

procedure is as follows.  We extend the velocity field to a complex valued one and write down the 

action.  Minimization of the action is done in the complex space of the velocity field, followed by 

restricting the velocity field be real.  Then, the desired equation results.  In other words, we are 

going to pursue the course opposite to the standard classical mechanics.

Our method will be conceptually similar to the Salmon’s example mentioned above, with the imagi-

nary part of the velocity playing a role of the auxiliary field.  The components of the velocity are 

assembled to a field of a single 2 by 2 complex matrix in terms of which the action is expressed with-

out using any Lagrange multipliers.  Although the stationary action principle leads to the correct 

Hamilton’s equations, our ‘action’ turns out not to have the standard form of the kinetic energy minus 

the potential energy.  Consequently, we will have an unusual conserved ‘Hamiltonian’.  Therefore, 

in this paper, we shall call our action ‘pseudo-action’ (, while, for brevity, the familiar terms ‘Lagrang-

ian’ and ‘Hamiltonian’ will be used). 
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The stationary action principle furnishes a closed and consistent set of equations with required sym-

metries.  This property can be preserved after any modification of the pseudo-action.  We will then 

proceed to extend the matrix field to incorporate an additional scalar field.  In this way, we will 

finally have a model of field theory that is akin to the so-called one equation eddy viscosity model 

(OEEVM, Spalart and Allmaras 1992 ;  1994) in the Eulerian description of motions.  An application 

of the model to turbulent flows will be presented.

This paper is organized as follows.  In the next section, we show how the pseudo-action for fluid 

dynamics is constructed in terms of the complex matrix field that describes the velocity.  In sec.3, the 

matrix field is extended to incorporate a scalar field.  The resultant equations of motion turn out to 

work as a OEEVM and their outcomes are compared with experimental results.  Final section is 

devoted to summary and some remarks.

2.  Pseudo-action for incompressible fluid and the N-S equation

2.1  Construction of pseudo-action and variational principle

In this section, we elaborate our method by considering the pure N-S equation.  The N-S equation 

consists of the Lagrangian derivative (which is also called material derivative, convective derivative 

and so on) terms, the dissipation term and the force term.  We write the corresponding contributions 

to the pseudo-action ANS as ALd, Adis and Af :

ANS=ALd+Adis+Af.� (2.1.1)

Let U be a complex 2×2 matrix which is equivalent to a complex velocity vector u.  In order to match 

the degree of freedom, U is restricted to be traceless.  Suppose the following expression for ALd

   �   (2.1.2)

where U@ is the hermitian conjugate of U.  The dot on U stands for a derivative with respect to time.  

a and b are constants to be determined by comparing the result with the Euler equations.  We impose 

a condition that, in analogy with the classical mechanics, the inertial time-derivative term gives a pure 

real contribution to ALd modulo surface integration.  This means a is real.  Summations for repeated 

indices are implied.  vi , i= 1 = xR W, 2 = yR W, 3 = zR W are the Pauli’s matrices :

� (2.1.3)

ALd= iTr aU@ oU+bU@v iU@2iU-b2iU@UviU+naU@-naUR Wdrdt,#

vi=
0
1

1
0

U Z, v2= 0
i
-i
0

U Z, v3= 1
0

0
-1

U Z.
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These satisfy the following commutation and anticommutation relations

                    (2.1.4)

na is a Lagrange multiplier introduced to constrain U to be traceless.

The variation of ALd under a small variation of U@ is given in the Cartesian coordinate system by

      � (2.1.5)

M stands for the matrix in the brackets in (2.1.5).  a and b are real constant.  We determine a and b 

so as for M to reduce to the Lagrangian derivative terms in the N-S equation.  For this purpose, we 

decompose U as

                   (2.1.6)

u is a complex vector field, which will finally be set to be real. 

The equation of motion for U should be equivalent to the equations of motion for ui, which are 

given by the coefficient when M is decomposed in vi.  Multiply M by v and take a trace.  After 

some manipulations with uses of (2.1.4), we have

                     (2.1.7)

Thus, the correct Lagrangian derivative results by choosing a=1/2 and b=1/8.  Thus, the form of 

ALd reads

         (2.1.8)

Similarly, the trace of M gives a scalar part of the equation

                           (2.1.9)

For the dissipation term, let us try the form

�  (2.1.10)

The variation of Adis yields

� (2.1.11)

This expression gives

� (2.1.12)

vi , v j" %= 2if ijkvk , vi , v jF I= 2d ij.

dALd= iTr d# U@ aoU+bviU@2iU+b2iUU@vi+b2i UviUR W+na" %drdt
= iTr dU@M# drdt.

U uR W= uivi/u$v, det U uR W=-u2.

TrviM= 2aoui+8bu$Uui.

ALd= iTr 2
1
U@ oU+ 8

1
U)viU)2iU- 8

12iU@UviUS Xdrdt.#

TrM= 2na.

Adis= 4
ic0 Tr# 2iU@2iU@-2iU2iUR Wdrdt.

dAdis= i Tr# dU@Ddrdt, D/- 2
c0 U2U@.

Trv iD=-c0U2ui ,
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� (2.1.13)

Requiring (2.1.12) to coincide with the dissipation term in the N-S equation, c0 turns out to be equal 

to the kinematic viscosity o .

uf/-t-1Ut+f , the force term in the N-S equation, is a real vector and includes the body force 

and the pressure gradient.  It will be derived by adopting the from

� (2.1.14)

with a constant e.  In fact, the variation of Af

� (2.1.15)

yields for the traces

� (2.1.16)

with TrF=0. (2.1.16) results in e=1.  Putting ALd, Adis and Af all together, we finally have the total 

pseudo-action ANS and the Lagrangian LNS of the forms

� (2.1.17a)

LNS= iTr 2
1
U@ oU+ 8

1
U@vU@$UU- 8

1UU@$UvU+ 4
c0 UU@R W2- 4

c0 UUR W2- 2
1
U@F+ 2

1 FUS X,
(2.1.17b)

together with na= 0.  Variational principle dANS/dU@= 0  yields

� (2.1.18)

Since ANS is real, LNS must constitutes of odd power of Imu.  Therefore, variation of the real parts of 

u yields the equations of motion that constitutes of odd power of the imaginary parts.  Those equa-

tions thus always have Imu=0 and U@=U  as a solution.  Then, the sum of the second, third and 

fourth terms on l.h.s. of (2.1.18) is written for real u as

so that (2.1.18) takes the form

� (2.1.18’)

The vector component of (2.1.18’) is extracted by taking trace after multiplying (2.1.18’) by v i .  Sca-

lar component is given by taking trace of (2.1.18), which identically vanishes.  Finally, we obtain the 

TrD= 0.

Af= 2
ie Tr# -U@F+F@UR Wdrdt, F/ uf$v=F@

dAf=- 2
ie

dU@Fdrdt,#

- 2
e TrviF=-eufi ,

ANS= LNS# dt/ LNSdrdt,#

oU+ 4
1
vU@$UU+ 4

1UU$U@v+ 4
1U$ UvUR W= c0U2U@+F.

4
1
vU$UU+ 4

1UU$Uv+ 4
1U$ UvUR W= 4

1
v,UF I$UU+ 4

1UU$ U, vF I
=u$UU

oU+u$UU= c0U2U+F.
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N-S equations

� (2.1.19)

Consequently, it was shown that the N-S equations are derived by requiring the total derivative of  ANS 

be stationary under unconstrained small variations of the field.  The imaginary parts of the velocity 

field play the role analogous to a Lagrange multiplier. 

2.2  Symmetries and invariants

The Lagrangian can be invariant under some global transformation of U|U u rR WR W" lU lu lrR WR W.   

If F is uniform, temporal and spatial translations are symmetry and Noether’s theorem states that the 

energy-momentum tensor T defined by

is conserved.  P= iU@T/2  is the canonically conjugate momentum of U .  The conserved ‘energy’ 

for the present action is

H= i Tr# - 8
1
U@vU@$UU+ 8

1UU@$UvU- 2
o UU@R W2+ 2

o UUR W2+ 2
1
U@F-F@UR WS Xdr,

� (2.2.1)

By symmetrizing the time-derivative term in LNS, the ‘three momentum’ is given by

� (2.2.1)

H and P identically vanish for real u because, in this case, U@=U.   However, it is easily checked 

that the above H generates the Hamilton’s equations

� (2.2.2)

and in this sense H is the Hamiltonian. 

The rotation of angle i  of the coordinate system about the axis of the direction of unit vector n, the 

coordinate transforms as lr T=R i, nR WrT  with R i, nR Wbeing a 3×3 matrix representation of the 

group SO(3).  We write such transformation symbolically as lr =Rr.  Then, transformation of any 

vector o is written in a same way :

                            (2.2.3)

There is a unitary operator 

                           (2.2.4)

oui+u$Uui= c0U2ui- t
2ip
+fi.

T0o=-d0oLNS+TrP2oU

P= 4
i Tr# U@UU-UU@UR Wdr.

oU=
dP
dH , oP=-

dU
dH ,

lo lrR W=Ro lrR W.

Uv iR W= e-iin$v/2
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that induces the transformation of v as a vector

             (2.2.5)

Therefore, U is invariant under the transformation 

                (2.2.6)

Owing to this property of U, if f is a vector, F and the Lagrangian too are invariant under the rotation. 

Nullity of the total angular momentum in real space also follows.  These are the reason we called ANS 

the pseudo-action. 

  That H is conserved for any force F as long as U is a solution of the equation of motion holds for 

arbitrary complex F.  Let us consider to add to F in (2.2.1a) an infinitesimal imaginary component lF .  Due 

to the Helmholtz’s theorem, lF  may be written as 

� (2.2.7)

where k and h are time-independent arbitrary infinitesimal real one- and three-components functions, 

respectively.  Suppose u is real.  Adding an antihermitian matrix lF  to F in the equation of motion 

will result in emerging an infinitesimal imaginary part lu  in the velocity.  Let us replace the corre-

sponding U as

        (2.2.8)

lU = i lu $v is antihermitian.  The change lH  in the Hamiltonian (2.2.1) in the lowest order of lF  is 

symbolically expressed by

where LNS has been treated as a functional of independent fields U and F.  lF @=- lF  has also been 

used.  The third and fourth terms vanish because of the equations of motion for U.  In addition, not-

ing that dLNS/dF@= iU/2=-dLNS/dF, lH  is rewritten as

            
 
 

(2.2.9)

The integration region is an infinite cylinder with a cross section S of very large radius R.  lH  is a 

constant of motion when small perturbation exists. 

Let us consider the case of k=0.  Suppose that the flow is two-dimensional, i.e., u= ux , uy , 0R W .  
Choose the form b= 0, 0, g x, yR WR W in -,# z# ,, where g=g0=constant!0 within radius= 

lv =Uv iR WvUv iR W-1=Rv.

U uR W" lU luR W=UvU RuR WUv-1=U uR W.

lF = i lf $v= iUk+U#hR W$v,

U"U+ lU =u$v+i lu $v.

lH =Tr 2
i
U@ olU + 2

i
lU @ oU- dLNS/dU@R W lU @- dLNS/dUR W lU + dLNS/dF@R W lF - dLNS/dFR W lF# &# dr,

lH = iTr 2
1
UolU - 2

1 oU lU +U lFS Xdr#

= -u$olu +ou$ lu -2u$Uk-2u$U#hR Wdr.#



Variational Principle for Eulerian Dynamics of Incompressible Viscous Fluid and A New Eddy Viscosity Model

9

r#R1 and g= 0  at r=R>R1 with R-R1 % R.  g  monotonically decreases in R1# r#R.  In ter-

minology of mathematics, the interior of a circle C with r=R is the support of g .  For this configura-

tion of h, lf =U#h , and lu  too, are non-vanishing only in the narrow region R1# r#R.  There-

fore, the first two lu -dependent terms in (2.2.9) can be neglected.  Then, lH  per unit length along the 

z-axis is written as 

The integrations on r.h.s. are assumed to exist.  By virtue of Gauss’ theorem, the first term on r.h.s. 

vanishes :

because g= 0  on C.  Here, dl is an oriented line element on C.  In the second term, hdS can be 

replaced by g0dS  where dS is an area element directed to the positive z-direction.  Applying Stokes’ 

theorem, we have

                        (2.2.10)

By letting R, R1"3 with R-R1  % R, the approximate equality in (2.2.10) becomes the equal-

ity.  The r.h.s. of (2.2.10) is conserved for any constant g0 , so that we have the conservation of circu-

lation at infinity

�   (2.2.11)

(2.2.11) corresponds to Kelvin’s theorem for inviscid flow.  The derivations of the fluid equation or 

the exact Kelvin’s theorem for inviscid flow within the Eulerian stationary action principle have been 

presented by many authors (Lin 1965, Van Saarloos 1981, Salmon 1988).  Their actions are of the 

standard classical mechanics : the Lagrangian is constructed from kinetic energy minus thermody-

namical internal energy supplemented by several constraints with uses of Lagrange multipliers.  For 

instance, the so-called particle-relabeling invariance is conventionally introduced to treat vorticity 

(Lin 1965).  It is noted that, in the present fully Eulerian picture, there is no need to recourse to the 

particle picture in deriving the equation of motion and identifying the conserved quantities. 

lH /2,=-2 u$U#hdS
S
#

= 2 U$ u#hR WdS
S
# -2 U#uR W$hdS.

S
#

2 U$ u#hR WdS= 2 u#hR W$dl= 0
C
#

S
#

□lH /2,.-2g0 u$dl.#

dt
d u# $dl= 0.
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3.  Incorporation of scalar field and an eddy viscosity model

3.1  Role of imaginary part in the pseudo-action

U uR W introduced in the previous section are traceless elements of GL(2,C) but their set does not 

close with respect to multiplications because Tr U uR WU luR WR W! 0  in general.  This may be an unsat-

isfactory feature if higher order interactions of more general forms are going to be taken into account. 

This problem is resolved by removing the traceless constraint for U  and incorporating a scalar field 

{  as

� (3.1.1)

where { ! 0R W  and u are generally complex.  As before, we later let them be real.  The set of 

U u, {R W  is closed and forms a group GL(2,C) for det U={2-u2! 0 .  The Lagrange multipliers 

na and na) in (2.1.2) are now relegated at the beginning and U@ is freely varied.  We again obtain 

(2.1.18) but with (3.1.1).  Noting that v,UF I= 2{v+2u , (2.1.18) is now takes for real {  and u the 

form

Simply taking a trace after multiplying vi  or a unit matrix to this equation, we obtain 

                       (3.1.2a)

                            (3.1.2b)

Note that the N-S equations have been modified by the presence of a term -{2i{  on r.h.s. of (2.1.2a).  

This is the reaction term of  {  to u that emerges owing to the action of u to {  in (3.1.2b).   

The appearance of the action-reaction relation of this kind is the consequence of invoking the varia-

tional principle on the dynamics of U  represented by (3.1.1).  {  is something that is advected like a 

passive scalar when 2i{2 is sufficiently small.  The meaning of {  will be elicited from interaction 

between {  and u that will be introduced in the followings. 

  New terms must be invariant under rotation and Galilei transformation.  As the candidates of 

such terms, we look for the forms consisting of TrU  and UU  and their hermitian conjugates.  Con-

sider Akin
{ = L kin

{# dtdr  where

U u, {R W={1+u$v,

oU+ 2
1
{v+uR W$U{+Uu jv jR W+ 2

1 U{+Uu jv jR W$ {v+uR W
= oU+{U{v+u$U{+u$Uu jv j+{U$u

= c0U2U+F.

oui+u$Uui= c0U2u j-{2i{- t
2ip
+fi

o{+U$ {uR W= c0U2{.



Variational Principle for Eulerian Dynamics of Incompressible Viscous Fluid and A New Eddy Viscosity Model

11

                   (3.1.3)

with m0> 0.  As before, the variation of Adif is given by

                         (3.1.4)

In the limit of  Im{= Imu= 0 , which is the solution of the equations of motion, Akin
{  does not affect 

the equation for u, while the equation (3.1.2) is modified to

                 (3.1.5)

{  behaves as a diffusive passive scalar for m> 0 . 

3.2  Interaction and the physical meaning of {  

There are an infinite number of possible interactions among U  and U@  with the invariance under 

transformations discussed in the previous section.  In the followings, keeping the arguments in the 

previous subsection in mind, we construct as simple a Lagrangian as possible that gives physically 

acceptable interactions. 

As the simplest third order interaction, we adopt A 3R W= L 3R Wdrdt#  where

L 3R W= 8
ic1 TrU@TrUU@R W2-TrUUR W2TrUR W- 16

ic1 TrU@R WUTrU@R W2-UTrUR W2TrUR W.    (3.2.1)

The second term on r.h.s. of (3.2.1) is present to assure that higher order interactions between {  and u 

exist only when the velocity gradients exist.  In fact, L(3)=0 when u=0.

The variational contributions that follows from this term is given by

                       (3.2.2a)

                     (3.2.2b)

where UuR W2/2iu j2iu j.  Arrows mean that all fields are real.

Next, we consider the real potential term for { :

              (3.2.3)

The meaning and the form of the function V(x) will be argued later.  Its variational contributions are

                          (3.2.4a)

                       (3.2.4b)

Adding the above terms to ANS given by (2.1.17a) with U  being replaced by the one defined in 

L Kin{ = 8
im0 TrUU@R W2- TrUUR W2R W,

dU@
dAkin

{

= 4
im0 U2TrU@.

o{+u$U{= mU2{, m/ m0+c0.

Tr
dU@
dA 3R W

viT Y"-ic1U{UuiR W,

Tr
dU@
dA 3R WT Y" 2

ic1 UuR W2,

AV= i V TrU/2R W-V TrU@/2R WR Wdrdt.#

Tr
dU@
dAV viT Y= 0,

Tr
dU@
dAV =- 2

i
lV TrU@/2R W.
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(3.1.1), the pseudo-action we adopt is

                     (3.2.5)

The variational equations of motion that follows from A in real space of fields are

             (3.2.6a)

                (3.2.6b)

The first equation is a generalization of the N-S equation in which c0+c1{  acts on u as the viscosity 

coefficient.  The second equation describes how {  is advected and diffuses via. shear stress and  self-

interaction. 

The system (3.2.6) is essentially identical to the one derived by the variational principle with a non-

holonomic condition and the action-reaction principle (Takahashi 2016).  What is important is not 

whether the condition is holonomic or non-holonomic but whether the principle of action-reaction is 

fulfilled. 

We notice that (3.2.6a) and (3.2.6b) constitute a structure similar to the eddy viscosity models.  

They hopefully close the Reynolds average equations to best approximation.  By contrast, the equa-

tions (3.2.6) were generated from the stationary action principle in a dynamically consistent way.  

Because of its consistency and simplicity, the system (3.2.6) is worth further exploration.  Unfortu-

nately, the relation between {  in (3.2.6) and the eddy viscosity in eddy viscosity models is not yet 

clear.  We may call any system derived from the stationary action principle like (3.2.6) a dynamical 

effective viscosity model (DEVM).  (However, it should not be confused with the dynamic eddy vis-

cosity model which varies the value of the model parameter during the numerical calculations and find 

the best one using some criterion.  There, ‘dynamic’ is a notion in numerical analysis.  See Germano 

et al. 1991 ;  Lilly 1992 ;  Park et al. 2006.)

3.3  Form of V(x) and minimal DEVM

In order to infer the form of V(x), we notice the invariance of the original N-S equation under the 

space-time inversion, r→−r, t→−t, u→u, f→−f accompanied with the change of sign of the viscosity, 

o"-o .  Another noticeable invariance is for stationary flows.  In this case, the equation is invari-

ant under r→r, u→−u, f→f together with the sign change of viscosity (For an application of this 

invariance to finding vortex solutions, see Takahashi 2015).  The viscosity inversion invariance in 

these cases implies {"-{ must be a symmetry in DEVM.  Therefore, lV {R W  must be an even func-

A=ANS+Akin
{ +A 3R W+AV.

oui+u$Uui=U$ c0+c1{R WUuiR W- 2
12i{2- t

2ip
+fi ,

o{+u$U{= mU2{- 2
c1 UuR W2+ 2

1
lV {R W.
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tion of {. 

When the flow is stationary and at the same time the velocity gradients are entirely absent, the fluid 

is uniform and isotropic and the viscosity must be temporally and spatially constant.  In this case, the 

equation must give {={0 =constant as the solution.  Therefore, lV {R W  is a regular function of 

{2-{02.  The features noted above are implemented in a simplest way into the form

            (3.3.1)

We rewrite the model derived above in terms of a dimensionless scalar z/{/{0  as

               (3.3.2a)

               (3.3.2b)

where o0/ c1{0, c0l= c0/o0, m1/ c2{0. o0 is a representative kinematic viscosity.  The configu-

ration z rR W/ 1 in the second equation implies the absence of the velocity gradient.  We assume m1> 0, 

so that this configuration is expected to be stable because a small deviation from z=1 decays with the 

time constant 1/m1 . 

  In the above dynamical system, the field z behaves and interacts with u in an analogous manner to 

the eddy viscosity in the averaged Reynolds-stress models.  The flow equation (3.3.2a) is supple-

mented by an additional equation for z.  Therefore, the system is viewed as an example of OEEVMs, 

which have been developed by Spalart and Allmaras (1992, 1994).  Their model employs the equa-

tion for the eddy viscosity o t  like

        (3.3.3)

The third and the fourth terms on r.h.s. are the production and destruction terms, respectively.  S is 

the characteristic rate of strain.  fw is a function introduced to adjust the outcome of the model to 

experimental result.  Such a method of model construction was originally proposed by Van Driest 

(1956).  Its modified versions have been commonly devised and employed in eddy viscosity models 

of various forms.  Its role here is to suppress the destruction effect near the wall.  The destruction 

term is of the square term of o t , so that it corresponds to the potential term in our model.  Spalart and 

Allmaras’s model (1992, 1994) reproduces the experimentally known mean-velocity profile of turbu-

lent flow in the viscous sublayer and the logarithmic layer.  In our model, however, the potential term 

turns out later to give positive contribution to oo t  because of smallness of z  near the wall.  The 

destruction term is provided by the gradient of u and z.  In the next section, we will see by numerical 

lV {R W=-c2 {2-{02R W or V {R W= c2 {02{- 3
1
{3S X.

oui+u$Uui= o0U$ lc 0+zR WUuiR W- 2
12i{2+ufi ,

oz+u$Uz= mU2z- 2{02
o0 UuR W2- 2

m1 z2-1R W,

oo t+u$Uo t= v
1U$ otUotR W+

v
cb2 Uo tR W2+cb1Sot-cw1fw d

otT Y2.
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calculations how effectively this destruction term works in our model.

4.  Turbulent channel flow and pipe flow

In this section, we apply (3.3.2) to a turbulent channel flow with interpreting u as the mean velocity. 

Although the final form of the model treated below is identical to the one discussed previously (Taka-

hashi 2016), we will repeat some arguments in order to highlight the consequence of our model that is 

novel and is conceptually distinctive from the prevalent eddy viscosity models. 

We set lc 0=0 throughout our analyses given in the followings.  Let us consider first a steady paral-

lel flow u=(ux(z), 0, 0) bounded by two planes at z=0 and 2d in the Cartesian coordinate.  The sys-

tem is assumed to be uniform in the x- and y-directions.  The equations of motion read

                     (4.1)

                  (4.2)

where the dimensionless velocity tux/ ux/{0  has been introduced.  The prime stands for a derivative 

with respect to the dimensionless coordinate tz/ z/,c  where ,c= m/m1R W1/2 is the characteristic length.  

(4.1) is nothing but (3.3.1a) with i=x.  The equations for i=y and i=z are 0=0 and { l{ =- lp /t

+fz/,c , respectively.  The latter one is used to determine the z-dependence of the pressure.

a  is assumed to be constant.  tux  away from the wall will take values of the order of unity.  The 

continuity condition is automatically satisfied.  (4.1) and (4.2) imply that the profile of channel flow 

under a given boundary conditions is essentially determined by a  and b.  Re=,c{0/o0  is the Reyn-

olds number and Pr the Prandtl number.  Fr= t{0
2/ fx,cR WR W1/2  is the (generalized) Froude number, 

which is a measure of rapidity of the flow as compared to the wave velocity. 

(4.1) is integrated once to yield

                               (4.3)

with an integration constant C1.  Due to symmetry, tlu x= 0  at the middle point of the channel, so that, 

from (4.3), C1 is related to the half channel width d and the parameter a  by

                          (4.4)

Let z0  be the value of z  at the wall and write tux+ u1tz  (no-slip condition) and z+z0+z1tz   near the 

wall, so that, from (4.3), we have

ztuxlR Wl+a= 0, a/
to0{0m1

ufxm
= Fr2

Re ,

mz - 2
b tlu xR W2- 2

1
z2-1R W= 0, b/

m
o0 =Pr,

tlu x= z
C1-atz ,

C1=atd/ad/,c.
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                                  (4.5)

ux at the viscous sublayer is usually expressed as ux= ux/lxR Wz or

                              (4.6)

ux is the wall-friction velocity, and lx  the wall-friction length.  Let us introduce a constant c by

                               (4.7)

Then, comparing (4.7) with (4.5) and (4.6), we also have

                          (4.8)

From (4.7) and (4.8), we see that, if c+O 1R W, o0/m1R W1/2z0  and {0C1 respectively provide the measures 

for lx and ux. 

Numerically integrating (4.1) and (4.2) is easy.  Some examples of the solutions are shown in Fig. 

1 and Fig. 2 as functions of z/lx .  For values of parameters, see the figure captions.  We have cho-

sen the values of parameters so as for the equalities lz = tlu x= 0  to hold at the midpoint. 

Except for very vicinities of the wall, z  monotonically increases with z from very small value to a 

maximum at the middle point of the channel.  In the region z<d/4, z  is well approximated by a linear 

function of z. 

The velocity distributions are shown in Fig. 2.  The best fitting to the experimental data of the 

z0u1=C1.

tux= tux/tl xR Wtz= u1tz.

tl x/ lx/,c=cz0.

tux/ ux/{0= tl xC1/z0=cC1.

Fig. 1 � z vs. z/d for the Prandtl number b= 1  (solid curve), 0.8 (dotted curve), 0.6 (dashed curve), and 0.4 
(dash-dotted curve).  a=0.001 and z0=0.001 are fixed.  Other parameters lz 0R W, tdR Ware taken as 
Solid curve :  (−0.45, 1.7), Dotted curve :  (−0.38, 0.99), Dashed curve :  (−0.3, 0.7), Dash-dotted 
curve :  (−0.2, 0.44). 
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velocity distribution (Laufer 1951, Wei and Willmarth 1989) was sought for four values of b. 

Fairly good agreement with the experimental observations is achieved for b=1.  In particular, the 

distinction between the regions in which ux grows linearly z/lx< 2R W  and almost logarithmically 

z/lx> 30R W , which is characterized by the bending of curve in between, is clearly observed in Fig. 2. 

Although not explicitly shown here, the negativity of z1  seems quite effective to achieve this feature 

of the velocity distribution.  Note that no adjustable function like Van Driest’s damping functions 

was utilized to obtain this result. 

The calculated velocity in the logarithmic layer, 80< z/lx< 800 , behaves as

     (4.9)

That is, the Kármán constant l in our model is about 0.36.  Together with C. 6.8, these are to be 

compared with the experimentally known values lexp= 0.37+ 0.4  and Cexp= 3.7+ 5  (Laufer 1951, 

Wei and Willmarth 1989).  Tuning of the boundary values to improve further the result will be possi-

ble.  The origin of the logarithm-like behaviour (4.9) is the presence of a region of approximately 

linear growth of z, z+z1ltz , off the wall.  Other powers for the functional form of z  in this region 

would be possible.  In that case, power behaviour for the velocity distribution would emerge, as had 

been advocated by some authors (Barenblatt and Chorin 1993 ;  Wosnik et al. 2000).  Zanoun et al. 

(2004) have experimentally suggested the validity of the logarithmic behaviour and a value 1/e. 0.37

for Kármán constant.  In view of our present model, the distinction of this kind bears no physical sig-

tux
tux .

l
1 ln tz/tl xR W+C. 0.36

1 ln tz/tl xR W+6.8

Fig. 2 � Examples of ux/ux= tux/tuxR W  vs. z/lx= tz/tl xR W as the solutions of (4.1) and (4.2).  The meanings of the 
curves are same as in Fig. 1. tux , tl xR W| 0.01, 4.3#10-4R W  for solid curve, (0.01, 5.6×10−4) for dotted 
curve, (0.01, 5×10−4) for dashed curve, (0.01, 6.3×10−4) for dash-dotted curve.  Squares are experi-
mental data taken from Laufer (1951) and Wei and Willmarth (1989).
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nificance.

The system (3.3.2) can also be applied to a flow in a circular pipe.  Write u=(0, 0, uz(r) in the 

cylindrical coordinate with r being the distance from the central axis of the pipe.  b= 1 is fixed.  

The result is shown in Fig. 3.  z  is almost constant in the central region of the pipe and decreases to 

a very small value at the pipe wall.  A smaller z  gives rise to a larger second derivative of the veloc-

ity and in turn more rapid decreases of the velocity particularly in the viscous sublayer as is shown in 

Fig. 3.  Consequently, larger deviation of z0 from unity brings about larger bending of the curve of uz 

in the transition region.  The Kármán constant decreases as a  increases.  The conformity with the 

experiments (Laufer 1953, Ferro 2012) is quite well for  a=0.008 and z (0)=0.974. 

The conclusion of this section is that the minimal DEVM derived from the stationary action princi-

ple can be a model of mean turbulent flows.  The equations of motion derived in this model are 

equivalent to the ones previously constructed by a variational method with a non-holonomic condition 

(Takahashi 2016).  The solutions of the equations of motion, therefore, coincide with the ones in the 

present minimal DEVM.  In particular, the Reynolds stress in parallel flow is given in Takahashi 

(2016), which was calculated with help of the N-S equations. 

5.  Summary and remarks

We showed that constructing of action, which we called the pseudo-action, within the Eulerian 

Fig. 3 � Flow in a pipe.  Left panel :  z  as a function of r/R for various a and z0 .  R is the pipe radius and r is 
the radial distance from the central axis.  The meanings of the curves are designated in the right 
panel.  Right panel :  Mean velocity in pipe flow for some parameter values of a and z0 .   
r+/ R-rR W/lx. z1= 0.04 . tR, tumaxR W= (8.6, 0.53) for red solid curve ;  (7.8, 0.5) for blue dotted 
curve ;  (7, 0.46) for green dashed curve ;  (6.2, 0.014) for purple dot-dashed curve ;  (5.7, 0.37) for 
black solid curve.  Squares are experimental data taken from Laufer (1953).
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description of motion of viscous fluid is possible in terms of complex matrix representation of fields.  

The required symmetries of the pseudo-action were of space-time translation, rotation and Galilei 

transformation.  By appropriately choosing the kinematic and interaction terms, the stationary action 

principle produces the field equations equivalent to the N-S equation or the eddy viscosity model 

according to whether the field is traceless or not.  The conserved ‘Hamiltonian’, ‘momentum’ and 

‘angular momentum’ derived from the pseudo-action of the real fields all trivially vanish.  Nontrivial 

conservation of circulation at infinity was proved in the complex space of the fields. 

The derived DEVM, when applied to a channel flow, provides a set of equations for the mean 

velocity and the eddy viscosity with two free model parameters, one is the Prandtl number and the 

other a ratio of Reynolds number to the Froude number squared.  By appropriately choosing the 

boundary conditions together with the model parameters, in particular, Pr. 1, DEVM gave fairly nice 

agreements with experiments.  Considering the model’s simplicity, this may be due to the fact that 

the stationary action principle enables us to construct dynamics incorporating correctly related interac-

tions between velocity and viscosity. 

DEVM is expressed in terms of a scalar matrix U and describes the dynamics of mean velocity and 

eddy viscosity.  Is it possible to incorporate fluctuations like the Reynolds stress ?  In order to 

answer this question, let us recall that the fundamental requirement for DEVM is to fulfil a few invari-

ance principles, namely, invariance under translation, rotation and Galilei transformation together with 

the viscosity-inversion invariance.  Therefore, inclusion of fluctuation, if it is tensors, may be done 

by introducing a vector matrix, say Ri=Rijv j  and by writing down an invariant action.  This possi-

bility will be worth a detailed research.  If the result is affirmative, such a model may be called a 

dynamical eddy viscosity model.

In the framework of Eulerian field theory, any dynamically consistent extension of our minimal 

model with the symmetries being unbroken will be straightforward.  There exist an infinite number 

of interactions that are consistent with the requirements mentioned above.  We do not yet find a gen-

eral rule of selecting a priori physically preferable ones.  Nevertheless, that Pr. 1 yields a best fit-

ting tells us an important hint.  Pr. 1 states that the rate of the energy dissipation due to shear stress 

is nearly equal to the rate of diffusion of effective viscosity field.  The diffusion of the effective vis-

cosity field may be regarded to correspond to the Kolmogorov cascade in turbulence that is responsi-

ble for the established scaling law of energy dissipation.  As long as the mean profile of turbulence is 

concerned, therefore, the role of eddies is expected to dominate over other (i.e., molecular) elements 

irrespective of the scale of the system.  It is thus prompted to apply our model in its present form to 
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other, possibly astronomical, systems of entirely different scales.  The results of study in this area 

will be reported in near future.
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