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Reconstructing the Tensor Model for  

the Reynolds Stress in Turbulent Channel Flow

TAKAHASHI Koichi

The tensor model for the Reynolds stress proposed in a previous work is reconstructed and applied 

to a turbulent channel flow.  The qualitative feature of the experimental data are well reproduced.

That the Navier-Stokes equation is derivable from the variational principle without unholonomic 

condition was proved by Takahashi (2017), on which the dynamical effective viscosity model 

(DEVM) was grounded.  In addition to the kinematic viscosity, the DEVM consists of mutually inter-

acting complex scalar and vector fields that correspond respectively to the effective viscosity and the 

mean fluid velocity.  When applied to channel and tube turbulent flows, the DEVM gives quite simpli-

fied equations of motion and reproduces the experimental results for mean velocity (Takahashi 2017).  

In so far as these simplest turbulences are concerned, we may admit the conceptual success of the 

DEVM.  

Fluctuations of the velocity are another important quantities that specify the property of turbulence.  

The one researchers adopt as the indices of the velocity fluctuations is the Reynolds stress, δ δu ui j , 

where δui is a fluctuation of the velocity component ui and the bar denotes ensemble average.  Reyn-

olds stress is a tensor.  It is then natural to try to extend the DEVM so as to incorporate a tensor, which 

we write Rij.  The first attempt of such an extension of DEVM was done by Takahashi (2018a, 2018b), 

according to which, when applied to a channel turbulent flow, the tensor in the model exhibited behav-

iors that are consistent with the observed Reynolds stress at least in the central region.  It should be 

noted that the tensor model in Takahashi (2018a, 2018b) does not alter the equations of motion for the 

effective viscosity and the mean velocity presented in Takahashi (2017).

However, in the above model, there were two shortcomings.  First, the tensor was not symmetric 

and was not straightforwardly identified with the Reynolds stress.  Second, the deviation of the model 

calculation for the symmetric components of the tensor from the experimental data was appreciably 

large near the wall.  
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We remedy the first deficit by rewriting the interaction Lagrangian, i.e., the terms that do not 

involve time derivative, in Takahashi (2018b) by replacing Rij by 

               S R Rij ij ji= +( ) / 2  (1)

or R i ij jRº σ  by

                 Si ij jS= σ . (2)

This replacement gives rise to the equations of motion for Rij that is invariant under the exchange of 

i and j.  Then the symmetry of the solution is assured if boundary or initial condition is symmetric.  

The equations (3.2a) ~ (3.2d) supplemented by (3.6) for Sij in Takahashi (2018b) is nothing but the 

equation for Rij.  The relevant equations are recapitulated below.

  ( )( ) ( )2 2 4
0 1 4 72 0xx xy x xx xR R u g Σ g R g u g ,   ¢¢ ¢ ¢ ¢ ¢+ - - - - + - =

  ( )( ) ( )( ) ( )2 2 4
0 1 4 5 6 7 0yy yy xR g Σ g R g g u g g ,   ¢¢ ¢ ¢ ¢+ - - - + + - + =

  ( )( ) ( )2 2
0 1 4 0zz zz xR g Σ g R g u ,  ¢¢ ¢ ¢+ - - - + =  (3)
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where Σ£ = + +R R Rxx yy zz .  The prime denotes a differentiation with respect to y, where y is the ratio 

of the wall distance to the half channel width.  φ and ux are the appropriately normalized effective vis-

cosity function and the mean velocity, which are known functions of y (Takahashi 2018a, 2018b).  g0 

represents the strength of coupling of Rij to Σ, while g1 measures the strength of the self coupling.  

Then, the set of equations (3) uniquely determines the Rij if boundary conditions are given.  For the 

sake of simplicity, we restrict ourselves to the case of g6 = 0.  From now on, we regard above Rij as 

the Reynolds stress.  

  Concerning the second problem, we retry finding the best set of parameters by trial and error.  The 

efficiency of this calculation may be somewhat raised if we notice the observed feature of the experi-

mental data.  For example, the experiment shows that the component Ryy of the Reynolds stress as a 

function of the distance from the wall has an extremum at y y= ≈a 0 25. (Nishino & Kasagi 1990).  

Furthermore, by the symmetry of the experimental setup, Ryy should have another extremum at y=1.  

Thus we have

               
� �+( ) ′( )′ =∫ R dyyyya

1

0

 
(4)

The equation of motion for Ryy tells that the integrand of (4) is expressed in terms of the model 
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parameters and Rji.  The latter are experimentally known.  Then the equation (4) gives a constraint on 

the model parameters.

Calculations were performed with two sets of parameters and the result are shown in Fig. 1 and 2.  

The gross experimental feature of the Reynolds stress is reproduced well by the present calculations.  

In particular, the near-wall behavior of Σ due to the present calculation shows a remarkable improve-

ment over the previous calculation given by Takahashi (2018b).  

The result for the off-diagonal component Rxy is also shown in Fig. 1.  Compare this with Fig. 1 in 

Takahashi (2018).  We see that the agreement with the experiment is also remarkable ; the present 

recalculation does not spoil the preferable feature of the previous result.  

In order to see the effect of some interaction terms, we repeat the calculation by varying model 

Fig. 1.  Diagonal (left panel) and off-diagonal (right panel) components of Rij calculated from (3).  Red (top) 
curve : Σ.  Blue (middle) curve : Rzz.  Purple (bottom) curve : Ryy.  Parameters are g0= −5.8, g1== 66, 
g fx2
 == −63, g3 == −40, ′ =g3 = 40, g4 == −0.9, g5 == −0.9, g6 == −17, g7 == 34, λ == 5.2.  Boundary values at 

y = 1 are Ryy = 0.38, Rzz= 0.4, Σ = 1.5, 0yy zzR R Σ¢ ¢ ¢= = = , Rxy= 0, ′ =Rxy = 0.78.  Symbols in the left panel 

denote the data of Rec= 3755 for δu2  (circles), δuz2  (squares) and δuy2  (crosses) adapted from Nishino 
& Kasagi (1990).  Circles in right panel denote the data of Rec=2970 for δ δu ux y  adapted from Wei & 
Willmarth (1987).

Fig. 2. Same as Fig. 1 with the same parameters and boundary values except g0  = −6.1.
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parameters.  One example of the result is shown in Fig. 2.  There, only the value of g0  is changed to 

−6.1, thereby the peaks of Σ, Ryy and Rzz are slightly decreased.  Rxy, whose shape is very sensitive to 

g fx2
 = −63, remains unchanged.

That a restricted number of interaction terms reproduce the experimental data at least qualitatively 

is not a trivial fact because the functions φ, ∇∇ ux, Rij and their higher derivatives do not form a com-

plete set for continuous functions.  Our result indicates that the invariant variational principle will 

constitute an essential ingredient in fluid dynamics.
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